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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information
that helps to enhance and protect the overall quality of life and that facilitates effective management of water,
biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources
is critical to ensuring long-term availahility of water that is safe for drinking and recreation and is suitable

for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the
availability of that water, now measured in terms of quantity and quality, even more essential to the long-term
sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support
national, regional, State, and local information needs and decisions related to water-quality management and
policy (http://water.usgs.gov/nawga). The NAWQA Program is designed to answer: What is the quality of our
Nation's streams and groundwater? How are conditions changing over time? How do natural features and
human activities affect the quality of streams and groundwater, and where are those effects most pronounced?
By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the
NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities.
During 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline
understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study
Units (http://water.usgs.gov/nawga/studyu.html).

National and regional assessments are ongoing in the second decade (2001-2012) of the NAWQA Program

as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the Study
Units by determining status and trends at sites that have been consistently monitored for more than a decade,
and filling critical gaps in characterizing the quality of surface water and groundwater. For example, increased
emphasis has been placed on assessing the quality of source water and finished water associated with many of
the Nation's largest community water systems. During the second decade, NAWQA is addressing five national
priority topics that build an understanding of how natural features and human activities affect water quality,
and establish links between sources of contaminants, the transport of those contaminants through the
hydrologic system, and the potential effects of contaminants on humans and aquatic ecosystems. Included are
studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation

of mercury in stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of
contaminants to public-supply wells. In addition, national syntheses of information on pesticides, volatile
organic compounds (VOCs), nutrients, trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and
effective water-resource management and strategies that protect and restore water quality. We hope this
NAWQA publication will provide you with insights and information to meet your needs, and will foster
increased citizen awareness and involvement in the protection and restoration of our Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource
issues of interest. External coordination at all levels is critical for cost-effective management, regulation,
and conservation of our Nation's water resources. The NAWQA Program, therefore, depends on advice
and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as
nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and
suggestions are greatly appreciated.

Matthew C. Larsen

Associate Director for Water
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Conversion Factors

Multiply By To obtain
Length
nanometer (nm) 0.00000003937 inch (in.)
micrometer (pLm) 0.00003937 inch (in.)
millimeter (mm) 0.03937 inch (in.)
centimeter (cm) 0.3937 inch (in.)
meter (m) 3.281 foot (ft)
meter (m) 1.094 yard (yd)
kilometer (m) 0.6214 mile (mi)
Volume
liter (L) 0.2642 gallon (gal)
liter (L) 33.82 ounce, fluid (fl. 0z)
Area
square meter (m?) 10.76 square foot (ft?)
square kilometer (km?) 0.3861 square mile (mi?)
Mass
gram (g) 0.03527 ounce, avoirdupois (0z)
kilogram (kg) 2.205 pound avoirdupois (1b)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8x°C)+32.

Concentrations of chemical constituents in water are given either in milligrams per liter
(mg/L), micrograms per liter (ug/L), or nanograms per liter (ng/L). Concentrations of chemical
constituents in fish tissue are given in micrograms per gram (pg/g); those in sediment are given

in nanograms per gram (ng/g).



Mercury in Fish, Bed Sediment, and Water from Streams
Across the United States, 1998-2005

By Barbara C. Scudder, Lia C. Chasar, Dennis A. Wentz, Nancy J. Bauch, Mark E. Brigham, Patrick W. Moran,

and David P. Krabbenhoft

Abstract

Mercury (Hg) was examined in top-predator fish, bed
sediment, and water from streams that spanned regional and
national gradients of Hg source strength and other factors
thought to influence methylmercury (MeHg) bioaccumulation.
Sampled settings include stream basins that were agricultural,
urbanized, undeveloped (forested, grassland, shrubland, and
wetland land cover), and mined (for gold and Hg). Each site
was sampled one time during seasonal low flow. Predator
fish were targeted for collection, and composited samples
of fish (primarily skin-off fillets) were analyzed for total Hg
(THg), as most of the Hg found in fish tissue (95-99 percent)
is MeHg. Samples of bed sediment and stream water were
analyzed for THg, MeHg, and characteristics thought to
affect Hg methylation, such as loss-on-ignition (LOI, a
measure of organic matter content) and acid-volatile sulfide
in bed sediment, and pH, dissolved organic carbon (DOC),
and dissolved sulfate in water. Fish-Hg concentrations at 27
percent of sampled sites exceeded the U.S. Environmental
Protection Agency human-health criterion of 0.3 micrograms
per gram wet weight. Exceedances were geographically
widespread, although the study design targeted specific
sites and fish species and sizes, so results do not represent
a true nationwide percentage of exceedances. The highest
THg concentrations in fish were from blackwater coastal-
plain streams draining forests or wetlands in the eastern and
southeastern United States, as well as from streams draining
gold- or Hg-mined basins in the western United States (1.80
and 1.95 micrograms THg per gram wet weight, respectively).
For unmined basins, length-normalized Hg concentrations
in largemouth bass were significantly higher in fish from
predominantly undeveloped or mixed-land-use basins
compared to urban basins. Hg concentrations in largemouth
bass from unmined basins were correlated positively with
basin percentages of evergreen forest and also woody wetland,
especially with increasing proximity of these two land-
cover types to the sampling site; this underscores the greater
likelihood for Hg bioaccumulation to occur in these types
of settings. Increasing concentrations of MeHg in unfiltered
stream water, and of bed-sediment MeHg normalized by LOI,
and decreasing pH and dissolved sulfate were also important

in explaining increasing Hg concentrations in largemouth bass.
MeHg concentrations in bed sediment correlated positively
with THg, LOI, and acid-volatile sulfide. Concentrations of
MeHg in water correlated positively with DOC, ultraviolet
absorbance, and THg in water, the percentage of MeHg in bed
sediment, and the percentage of wetland in the basin.

Introduction

Mercury (Hg) is a global pollutant that ultimately makes
its way into every aquatic ecosystem through the hydrologic
cycle. Anthropogenic (human-related) sources are estimated
to account for 50-75 percent of the annual input of Hg to the
global atmosphere and, on average, 67 percent of the total Hg
in atmospheric deposition to the United States (Meili, 1991;
U.S. Environmental Protection Agency, 1997; Seigneur and
others, 2004). Elevated Hg concentrations that are attributed
to atmospheric deposition have been documented worldwide
in aquatic ecosystems that are remote from industrial sources
(Fitzgerald and others, 1998).

Methylation—the microbially mediated conversion of
inorganic Hg to the organic form, methylmercury (MeHg)—is
the single most important step in the environmental Hg cycle
because it greatly increases Hg toxicity and bioaccumulation
potential. Laboratory studies estimate the bioaccumulation
potential for MeHg to be a thousand-fold that of inorganic
Hg (Ribeyre and Boudou, 1994). In aquatic ecosystems,
MeHg is found in elevated concentrations in top predators,
and physiological effects have been demonstrated at low
concentrations (Briand and Cohen, 1987; Eisler, 1987; Wiener
and Spry, 1996; U.S. Environmental Protection Agency, 2001;
Rumbold and others, 2002; Tchounwou and others, 2003;
Yokoo and others, 2003; Eisler, 2004). The process by which
Hg is accumulated into the lower trophic levels of aquatic
food webs is not well understood (Wiener and others, 2003).
Although diet has been demonstrated to be the dominant
mechanism of MeHg uptake in fish (Hall and others, 1997),
factors such as size, age, community structure, feeding habits,
and food-chain length are also important in the ultimate MeHg
fish-tissue concentration (Wong and others, 1997; Atwell and
others, 1998; Trudel and others, 2000; Wiener and others,
2003).



2 Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 19982005

Accumulation of MeHg in fish tissue is considered a
significant threat to the health of both wildlife and humans.
Approximately 95 percent or more of the Hg found in most
fish fillet/muscle tissue is MeHg (Huckabee and others, 1979;
Grieb and others, 1990; Bloom 1992). Women of child-bearing
age and infants are particularly vulnerable to effects from
consumption of Hg-contaminated fish (U.S. Environmental
Protection Agency, 2001). As of 2006, most States (48; no
advisories in Alaska or Wyoming), the District of Columbia,
one territory (American Samoa), and two Tribes have issued
fish-consumption advisories for Hg (U.S. Environmental
Protection Agency, 2007). These advisories represent
14,177,175 lake acres and 882,963 river miles, or 35 percent
of the Nation’s total lake acreage and about 25 percent of its
river miles.

Studies of Hg in aquatic environments have focused
mostly on lakes, reservoirs, and wetlands because of the
predominance of lakes with Hg concerns and the importance
of wetlands in Hg methylation (Bloom and others, 1991;
Driscoll and others, 1994; Hurley and others, 1995;
Krabbenhoft and others, 1995; St. Louis and others, 1994
and 1996; Westcott and Kalff, 1996; U.S. Environmental
Protection Agency, 1997; Fitzgerald and others, 1998;

Kotnik and others, 2002). Increasingly, however, studies

of streams and rivers have contributed significantly to our
understanding of Hg in these complex ecosystems (Hurley
and others, 1995; Balogh and others, 1998; Domagalski, 1998;
Wiener and Shields, 2000; Peckenham and others, 2003;
Dennis and others, 2005). Sources of regional or national
fish-Hg data include a U.S. Environmental Protection Agency
(USEPA) assessment of fish-Hg concentrations in streams

in the western United States (Peterson and others, 2007);

the USEPA National Lake Fish Tissue Studies (http:/www.
epa.gov/waterscience/fish/study/); the National Contaminant
Biomonitoring Program (NCBP) of the U.S. Fish and
Wildlife Service, which later became the Biomonitoring of
Environmental Status and Trends (BEST) program of the
U.S. Geological Survey (USGS) (Schmitt and others, 1999,
2002 and 2004; Hinck and others, 2004a, 2004b, 2006, 2007);
fish-Hg data compiled from 24 research and monitoring
programs in northeastern North America (Kamman and others,
2005); and a large compilation of many State, Federal, and
Tribal fish-Hg datasets (Wente, 2004; see also http://emmma.
usgs.gov/datasets.aspx).

Currently, it is difficult to directly compare fish-Hg
concentrations across the Nation by using any compilation
of fish-Hg data. Several issues must be resolved before
making effective use of other agencies’ datasets, and review
of other-agency data is beyond the scope of this report. These
issues include (1) use of multiple analytical laboratories and

analytical methods; (2) inconsistent or unknown data quality;
(3) large variations in sample characteristics, including

fish species, size, and tissue sampled; (4) incomplete site
information (for example, locations of some sites are not
adequately described, and some georeferenced sites may not
be coded as to site type, such as lake, stream, or reservoir);
and (5) incomplete sample information (for example, species,
length, or tissue sampled are not known). Several of these
issues have been described in greater detail by Wente (2004),
who has developed a promising statistical modeling approach
to account for variation in fish-Hg levels by species, size,

and tissue sampled. It is not known, however, whether the
approach performs equally well in streams as it does in lakes,
or whether it performs consistently among various regions of
the Nation. These issues emphasize the need for a nationwide
assessment of Hg in streams for fish, bed sediment, and water
based on consistent methods, as is provided by the study
described herein.

Purpose and Scope

The primary objective of this report is to describe the
occurrence and distribution of total mercury (THg) in fish
tissue in streams in relation to regional and national gradients
of Hg source strength (including atmospheric deposition,
gold and Hg mining, urbanization) and other factors that are
thought to affect Hg bioaccumulation, including wetland and
other land-use/land-cover types (LULC). Secondary objectives
are to evaluate THg and MeHg in streambed (bed) sediment
and stream water in relation to these gradients and to identify
ecosystem characteristics that favor the production and
bioaccumulation of MeHg.

The data discussed here are presented by Bauch and
others (2009). They were aggregated from 6 studies covering
a total of 367 sites across the Nation (table 1). The majority
of sites (266) were part of 2 studies conducted collaboratively
by the USGS National Water-Quality Assessment (NAWQA)
and Toxics Substances Hydrology Programs. The earliest of
these, the USGS National Mercury Pilot Study (Krabbenhoft
and others, 1999; Brumbaugh and others, 2001) sampled 107
streams across the Nation in 1998. During 2002 and 2004-5,
an additional 159 streams were sampled by the NAWQA
Program to complement those sampled during the 1998
National Mercury Pilot Study; the additional sampling sites
were chosen to increase spatial coverage and to supplement
source and environmental factors that previously were
underrepresented. An additional 101 stream sites were
sampled as part of 4 regional USGS studies in the Cheyenne-
Belle Fourche River Basins, 1998-99 (S.K. Sando, USGS,


http://www.epa.gov/waterscience/fish/study/
http://www.epa.gov/waterscience/fish/study/
http://emmma.usgs.gov/datasets.aspx
http://emmma.usgs.gov/datasets.aspx

Table 1. Number of sites on United States streams sampled for
mercury, 1998-2005.

[Regional studies: CHEY, Cheyenne-Belle Fourche River Basins, 1998-99;
DELR, Delaware River Basin, 1999-2001; NECB, New England Coastal
Basins, 1999-2000; and UMIS, Upper Mississippi River Basin, 2004]

_ Number of
Description .
sites
Study components

1998 National Mercury Pilot Study 107

2002—-05 Additional national studies 159

Regional studies: CHEY, DELR, NECB, UMIS 101

Total number of sites 367

Mercury data available

Fish mercury data 2901

Bed-sediment and water mercury data 352

Fish, bed-sediment, and water mercury data 274

unpublished data, 2005); Delaware River Basin, 1999-2001
(Brightbill and others, 2003); New England Coastal Basins,
1999-2000 (Chalmers and Krabbenhoft, 2001); and the Upper
Mississippi River Basin, 2004 (Christensen and others, 2006).
The regional studies used sample-collection, processing, and
analytical techniques that were comparable to those in the

two national studies, thus allowing direct comparison of the
results.

Study Design

Sampled streams were predominantly within the
boundaries of NAWQA study areas, which are major
hydrologic basins (fig. 1). These major hydrologic basins
encompass 45 percent of the land area of the conterminous
United States, some portion of each of the 50 States, and
60-70 percent of water use and population served by public
water supply (Leahy and others, 1990; Helsel, 1995; Gilliom
and others, 2001); they represent broad ranges of hydrologic
and geologic settings, LULC, and population density. Within
each major basin, streams were selected to represent the
specific environmental settings of interest. The resulting
network of sites reflects conditions across the United States.
Gilliom and others (1995), Helsel (1995), and Horowitz and
Stephens (2008) discuss the advantages of the NAWQA design
for sampling small streams at a national scale.

Introduction 3

Specific site-selection criteria within each of the major
hydrologic basins were based on targeted environmental
settings thought to be important with regard to the source,
concentration, or biogeochemical behavior of Hg in aquatic
ecosystems in that basin (table 7, at back of report). Settings
of particular interest included agricultural areas (enhanced
runoff of dissolved and colloidal Hg associated with organic
matter; particulate Hg from eroded soils); urban areas
(elevated local depositional sources; enhanced Hg runoff due
to impervious surfaces); undeveloped areas (atmospheric Hg
deposition source only); and mined areas (cinnabar mining;
historical gold mining, in which elemental Hg was used
as an amalgamating agent). Site categories of agricultural,
urban, undeveloped, and mixed LULC are consistent with the
definitions provided by Gilliom and others (2006):

» Agricultural basins contained greater than 50 percent
agricultural land and less than or equal to 5 percent
urban land.

» Urban basins contained greater than 25 percent urban
land and less than or equal to 25 percent agricultural
land.

* Undeveloped basins were primarily forest, herbaceous
grassland, shrubland, tundra, and wetland, and
contained less than or equal to 5 percent urban land
and less than or equal to 25 percent agricultural land.

* Mixed-land-use basins included all remaining LULC
combinations.

Compared with all streams in the conterminous United States,
this targeted sampling for Hg may have overrepresented urban
basins and underrepresented undeveloped basins (fig. 2).
Slightly more than two-thirds of the sampled Hg sites were

in the eastern half of the United States compared with the
western half (west of the Mississippi River).

Each site was sampled one time, typically during seasonal
low flow in late summer, for Hg and related constituents in
top-predator (piscivorous) fish, bed sediment, and stream
water. This multimedia approach on a national scale was
considered to be critical for helping to understand controls
on Hg partitioning, bioaccumulation, and biomagnification
(Krabbenhoft and others, 1999). Many studies have shown
that mature top-predator fish generally reflect the highest
potential Hg concentrations in aquatic food webs (Francesconi
and Lenanton, 1992; Weiner and Spry, 1996; Boudou and
Ribeyre, 1997; Morel and others, 1998; Kim and Burggraaf,
1999). Thus, largemouth bass was the piscivorous fish species
targeted for collection. At sites where this species was not
available in sufficient numbers, alternate top-predator fish
species were collected.
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Methods

Methods for field data collection, ancillary data
collection, laboratory analyses, and quality control are
summarized below and described in detail elsewhere
(primarily in Bauch and others, 2009; see also Lewis and
Brigham, 2004; Lutz and others, 2008; Scudder and others,
2008). All data presented in this report are published in Bauch
and others (2009).

Field Data Collection

Fish were collected primarily by electrofishing, but
also by rod/reel and gill nets. Largemouth bass (3-year age
class) were targeted for collection; alternate top predators
were selected if largemouth bass were not available. Fish
were measured for total length and weight. Fish axial muscle,
primarily skinless fillet (skin-on fillet at four sites in the Upper
Mississippi River Basin regional study), was dissected from
most fish in the field or laboratory by use of trace-metal clean
procedures (Scudder and others, 2008). Fish weighing less
than about 60 g were processed as whole-body or headless
fish (15 sites). For all samples except those collected during
2004-5, 1 to 10 fish (median of 5 fish) of the same species
and similar size for a site were composited to form a single
composite sample for analysis of THg. Fish collected during
20045 were processed individually for laboratory analyses.
After processing, fish samples were frozen until analysis.
Fish were not collected in the Cheyenne-Belle Fourche River
Basins.

Bed-sediment samples were collected by use of trace-
metal clean sampling techniques (Shelton and Capel, 1994;

Figure 2. Land-use/land-cover
categories for basins sampled for
mercury, 1998-2005, and for all U.S.
stream basins.

U.S. streams

Lutz and others, 2008). A Teflon® or plastic scoop was used
to remove the upper 2 to 4 cm of bed sediment from 5 to 10
depositional areas; samples were composited in Teflon® or
plastic containers into a single sample for each site. Each
sample was homogenized and subsampled for THg and MeHg,
loss-on-ignition (LOI, a measure of organic matter content),
acid-volatile sulfide (AVS), and sand/silt particle size (percent
less than 63 pm) analyses. Samples were unsieved, so as to
minimize disturbance of the natural partitioning of MeHg
and THg in the bed sediment and volatilization of sulfides.
Subsamples for Hg analysis were placed in Teflon® vials and
frozen.

Stream-water samples were collected by dipping Teflon®
or PETG (Nalgene) bottles in the centroid of streamflow
by use of trace-metal clean techniques (Olson and DeWild,
1999; Lewis and Brigham, 2004). Unfiltered THg samples
were acidified to 1 percent HCI by volume; unfiltered MeHg
samples were stored in a dark cooler until frozen (Krabbenhoft
and others, 1999). Samples for filtered THg and MeHg
analyses were passed through quartz fiber filters (47-mm
diameter, 0.7-pum pore size) in the field, placed into Teflon®
bottles, acidified to 1 percent HCI by volume, and stored in
the dark. Filters were placed on dry ice and stored frozen
until analysis of particulate THg and MeHg. Samples were
collected for additional water-quality characteristics, such
as pH, specific conductance, ultraviolet (UV) absorbance,
specific UV absorbance (SUVA) at 254 nanometers (nm),
and concentrations of dissolved organic carbon (DOC),
sulfate, and suspended sediment (total suspended sediment
concentration and fraction less than 63 pm). Streamflow was
measured one time during Hg sampling at sites without stream

gages.
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Ancillary Data Collection

A detailed description of selected ancillary spatial data
for each stream basin is given in Bauch and others (2009).
Stream-basin boundaries were delineated by using 1:24,000-
to 1:250,000-scale digital topographic and hydrologic
maps (Nakagaki and Wolock, 2005) or 30-m resolution
Elevation Derivatives for National Applications (EDNA)
reach catchments (U.S. Geological Survey, 2002). To verify
accuracy, additional independent checks were made of
selected basin boundaries. Natural features and potential
human influences within the study basins were characterized
by using Geographic Information System (GIS) coverages.
LULC information was obtained from 30-m resolution
National Land Cover Data (NLCD) that were based on
satellite imagery from the early to mid-1990s (Vogelmann
and others, 2001) and modified and enhanced (NLCDe 92)
with Geographic Information Retrieval and Analysis System
(GIRAS) data to give 25 LULC categories, as described in
Nakagaki and Wolock (2005). These were the most up-to-
date, nationally consistent LULC data at the time of our
analysis. All LULC values used in our report are percentages
of total basin area. Four initial groupings of sites were based
on criteria in Gilliom and others (2006): agricultural, urban,
undeveloped, and mixed. To address the possibility that
conditions observed at the sampling site were influenced more
by LULC closer to the site than by LULC farther from the site,
LULC percentages were weighted by the inverse Euclidean
distance from the site and reported as distance-weighted
LULC. This resulted in a basin-scale percentage for each
LULC category that was adjusted for spatial proximity to the
sampling site; an area of a particular LULC category that was
closer to the site received a higher weight and value than an
area farther away (Wente, 2000; Falcone and others, 2007).

Gold and Hg mining can result in significant
contributions of Hg to aquatic systems, so it was important
to characterize sites with regard to this particular land use.
Potential sources of Hg from past or current mining operations
were determined for each stream basin by using the Mineral
Availability System/Mineral Industry Location System (MAS/
MILS) database from the Bureau of Mines (V.C. Stephens,
U.S. Geological Survey, written commun., 2004), which is
now part of the Mineral Resources Data System (MRDS) of
the USGS (U.S. Geological Survey, 2004). The sites were
identified as (1) Hg mining operations, in general, (2) Hg
“producers,” (3) gold mining operations, in general, and
(4) gold “producers.” Producers included current or past
production mining operations. The highest densities of gold

or Hg production mining sites are in Arkansas, California,
Colorado, Idaho, Montana, and Nevada. A total of 89 basins
were designated as “mined” and treated separately for the
purposes of our data analyses; however, this distinction

was made only for data analyses in our report and does not
necessarily imply impacts of mining in these basins (fig. 3).
In addition, our study was not designed specifically to address
impacts of mining, so there may be areas of intense gold and
Hg mining that were not represented. Mined basins in the
eastern United States represented only gold mining.

Key soil characteristics were compiled from the U.S.
Department of Agriculture State Soil Geographic (STATSGO)
database (U.S. Department of Agriculture, 1994). Percent
organic matter, soil erodibility factor, and land-surface slope
were from Wolock (1997) and were linked by mapping-unit
identification code to a 100-m resolution national grid of
STATSGO geographic mapping units.

Basin hydrologic data were derived from various sources.
Mean annual precipitation is the average value predicted
from the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) (Daly, Neilson, and Phillips, 1994;
Daly, Taylor, and Gibson, 1997) based on annual precipitation
(1961-90) at 2-km resolution obtained from the Spatial
Climate Analysis Service at Oregon State University,
Corvallis, Oreg. Mean base-flow index, potential and actual
evapotranspiration, and topographic-wetness index values
were as calculated for each basin on national grids of 1 km
(Wolock and McCabe, 2000; Wolock, 2003a, 2003b; D.M
Wolock, U.S. Geological Survey, written commun., 2007).

Data from the National Atmospheric Deposition Program
(NADP) included information about measured wet Hg
deposition. Annual precipitation-weighted Hg deposition
concentrations for sites in the Mercury Deposition Network
(MDN; Roger Claybrooke, Illinois State Water Survey, written
commun., 2005) were averaged for 2000-2003. There were
few MDN sites in the western United States, so the mean
value for the seven most western MDN sites of the country
(4.56 pg/m?) was assigned to Western States (Arizona,
California, Colorado, Idaho, Kansas, Montana, Nebraska,
Nevada, New Mexico, North Dakota, Oklahoma, Oregon,
South Dakota, Utah, Washington, and Wyoming). Mean
basin wet-deposition concentrations of Hg were computed by
overlaying the basins with the average Hg deposition maps for
2000 through 2003. Finally, Hg loading rates were computed
by multiplying the MDN basin-averaged concentrations by the
mean annual modeled PRISM precipitation (Daly, Neilson,
and Phillips, 1994; Daly, Taylor, and Gibson, 1997). In
addition, wet, dry, and THg deposition rates were estimated by
using modeled results from Seigneur and others (2004).
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Laboratory Analyses

Fish samples were analyzed only for THg because
95 percent or more of the Hg found in most fish fillet/muscle
tissue is MeHg (Huckabee and others, 1979; Grieb and others,
1990; Bloom 1992). Five laboratories were used for these
analyses over the course of the study:

e USGS Columbia Environmental Research Center
(CERC:; 1998 National Mercury Pilot Study),

» USGS National Water Quality Laboratory (NWQL;
2002 samples; Delaware River Basin regional study,
2001 samples),

» Texas A&M University Trace Element Research
Laboratory (TERL; 2004-5 samples),

» USGS Wisconsin Mercury Research Laboratory
(WMRL; Delaware River Basin regional study, 1999
samples; New England Coastal Basins regional study),
and

 River Studies Center, University of Wisconsin, La
Crosse, Wis. (Upper Mississippi River Basin regional
study, 2004 samples).

Analytical Hg procedures for all laboratories except
TERL included digestion and quantification with cold vapor
atomic fluorescence spectroscopy (CVAFS) according to
USEPA Methods 3052 and 7474, or modifications of USEPA
Method 1631 Revision E (U.S. Environmental Protection
Agency, 1996a and b, 2002; Olson and DeWild, 1999;
Brumbaugh and others, 2001). The TERL analyzed fish
samples for Hg by thermal decomposition, amalgamation, and
atomic absorption spectrophotometry according to USEPA
Method 7473 (U.S. Environmental Protection Agency, 1998).
Fish ages were estimated from sagittal otoliths, scales, or
spines by the CERC (1998 samples) or the USGS South
Carolina Cooperative Fish and Wildlife Research Unit
(Columbia, S.C.; 2002 and 2004—05 samples) (Jearld, 1983;
Porak and others, 1986; Brumbaugh and others, 2001).

Bed sediment, stream water, and suspended particulate
material were analyzed for THg and MeHg by the WMRL in
Middleton, Wis. THg in stream water and particulate material
was analyzed by use of CVAFS according to USEPA Method
1631 Revision E (U.S. Environmental Protection Agency,
1996a and b, 2002), with modifications by the WMRL (Olson
and others, 1997; Olson and DeWild, 1999; Olund and others,
2004). MeHg in stream water and particulate samples was
determined by distillation, aqueous-phase ethylation, gas-
phase separation, and CVAFS (Bloom, 1989, as modified by
Horvat and others 1993; Olson and DeWild, 1999; DeWild

and others, 2002). Bed-sediment samples were analyzed
for THg and MeHg by use of similar analytical procedures
as those described above for stream water and particulate
samples, with some modifications (DeWild and others, 2004;
Olund and others, 2004).

Bed-sediment LOI was determined by the WMRL
by using methods described in Heiri and others (2001).
AVS was analyzed by the WMRL (1998 samples and New
England Coastal Basin regional study) or by the USGS
Sulfur Geochemistry Laboratory (SGL) in Reston, Va.
(2002 and 2004-5 samples; Upper Mississippi River Basin
regional study). At the WMRL, AVS samples were acidified
with hydrochloric acid, anti-oxidant buffer was added, and
sulfide was determined with an ion-specific electrode (Allen
and others, 1991). At the SGL, AVS was extracted with
hydrochloric acid, re-precipitated as silver sulfide, and percent
by weight of AVS determined gravimetrically (Allen and
others, 1991; Bates and others, 1993).

DOC concentrations in water were determined by
the USGS National Research Program Organic Carbon
Transformations Laboratory (NRP OCTL) in Boulder, Colo.,
(1998 and 2004-5 samples; Upper Mississippi River Basin
regional study) or by the WMRL (Cheyenne-Belle Fourche
River Basins regional study) using a persulfate wet oxidation
method described in Aiken (1992). For 2002 samples and the
Delaware River Basin, DOC concentrations were analyzed
at the NWQL with UV-promoted persulfate oxidation and
infrared spectroscopy (Brenton and Arnett, 1993). SUVA
was measured by the NRP OCTL as the UV absorbance of a
water sample at 254 nm, divided by the DOC concentration
(Weishaar and others, 2003); SUVA units are liters per
milligram carbon per meter. Stream-water samples were
analyzed for sulfate by ion chromatography (Fishman and
Friedman, 1989).

Data Analyses

Biota Accumulation Factors (BAFs) for fish with respect
to water and bed sediment were computed as follows:

BAF = Log,,(C,/C,,), (1
where
C, is the wet-weight Hg concentration in the fish,
in milligrams per kilogram and,
C,, is the MeHg concentration in filtered water,
in milligrams per liter, or the MeHg
concentration in bed sediment, in milligrams
per kilogram.
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Although fish-Hg concentrations on a wet-weight (ww) basis
were used for computing water BAFs (Watras and Bloom,
1992), fish-Hg concentrations on a dry-weight (dw) basis were
used for sediment BAFs because only dry-weight-based bed
sediment values were available. Higher BAFs indicate greater
differences between Hg concentrations in fish with respect to
Hg concentrations in water or bed sediment.

Concentrations of Hg in each composite sample of fish
were normalized by the mean fish length for that sample
(units are micrograms per gram per meter), and these
length-normalized Hg concentrations for fish were used in
comparisons to environmental characteristics. This was done
to minimize the effect of age and growth rate on evaluations of
any relations to environmental characteristics. Previous studies
have shown that Hg concentrations in fish tend to increase
with fish age, and length is commonly used as a surrogate for
age in normalizing Hg concentrations.

Concentrations of THg and MeHg in unfiltered water
were used for analysis of Hg in streams. For those sites with
filtered and particulate THg and MeHg data but no unfiltered
data, unfiltered THg and MeHg concentrations were computed
by summing filtered and particulate fractions. Suspended
particulate concentrations were expressed on a mass basis
(nanograms of Hg per gram of particulate material) by
dividing particulate Hg concentrations by suspended-sediment
concentrations (DeWild and others, 2004).

Parametric statistical tests were used, where possible,
after transforming data to meet assumptions of normal
distributions; nonparametric tests were used when
normalization was not possible. Mann-Whitney U tests were
used to assess differences in Hg concentrations between
sites grouped as mined basins compared to unmined
basins. Because of concerns with unequal sample sizes
among groups and non-normality of residuals, one-way
ANOVA tests on ranked data were used to compare Hg
concentrations among LULC groups for selected media.
Principal Components Analysis (PCA) and Spearman rank
correlation (r,, Spearman correlation coefficient) were used
to select the subset of variables for stepwise multiple-linear
regression and Redundancy Analysis (RDA); less responsive
metrics were eliminated. PCA and RDA were done in
CANOCO Version 4.5 with centering and standardization of
previously transformed variables (ter Braak, 2002). RDA is
a constrained form of multiple regression and was used with
forward selection as an alternative exploratory tool to evaluate
which suite of environmental characteristics best explained
the variation of Hg concentrations in fish, bed sediment, and
water. The reduced-model RDA was used with Monte Carlo
testing. Data Desk version 6.1 (Data Description, Inc., 1996)

and S-Plus version 7.0 (Insightful Corporation, 1998-2005)
were used for Spearman correlations, Mann-Whitney U tests,
ANOVA tests, and stepwise multiple-linear regression. All
statistical tests were considered significant at a probability
level of 0.05 unless otherwise stated.

Quality Control

The quality (bias and variability) of Hg data for fish was
evaluated by using laboratory blank and replicate samples,
spike recoveries, and reference materials; quality-assurance
results are presented in Bauch and others (2009). Each type of
quality-control sample was not available for all laboratories.
Results indicated low bias and good reproducibility in Hg data
for fish samples analyzed at the CERC, TERL, and University
of Wisconsin-La Crosse. Results for fish samples analyzed at
the NWQL in 2002 indicated possible low bias and moderate
variability in fish-Hg concentrations, and this may have
reduced the strength of some relations between fish Hg and
environmental characteristics. The quality of bed-sediment
and water THg and MeHg data was investigated through
blank and replicate samples collected in the field (Bauch
and others, 2009). Unfiltered, filtered, and particulate THg
and MeHg generally were either not detected in most blank
samples or were detected at concentrations that would not
affect data analysis. However, overlap of some high particulate
THg concentrations in blanks with low concentrations in
environmental samples may indicate a small positive bias
of particulate THg for some environmental data. Variability
in THg and MeHg determined from field-replicate samples
depended on the type of sample—unfiltered or filtered water,
particulate, or bed sediment—and concentrations being
analyzed; however, there was no effect on data analysis.

Spatial Distribution of Mercury in Fish,
Bed Sediment, and Stream Water

The spatial distributions of Hg in fish, bed sediment, and
water were assessed by use of maps and exceedance frequency
distributions. The majority of sites were in the eastern half of
the United States, and most but not all sites in mined basins
were in the western half of the United States (west of the
Mississippi River; fig. 3).
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Fish

No one fish species could be used across the United
States for comparative assessment of fish Hg accumulation.
Fish were collected at 291 sites, and 34 fish species made
up the total set of samples (table 2). The most commonly
collected fish were largemouth bass (Micropterus salmoides;
62 sites), smallmouth bass (Micropterus dolomieu; 60 sites),
brown trout (Salmo trutta; 22 sites), pumpkinseed (Lepomis
gibbosus; 18 sites), rock bass (Ambloplites rupestris; 17
sites), spotted bass (Micropterus punctulatus; 14 sites),
rainbow trout (Oncorhynchus mykiss, 14 sites), cutthroat
trout (Oncorhynchus clarkii; 12 sites), and channel catfish
(Ictalurus punctatus; 12 sites) (fig. 4). Hg comparisons across
species should be viewed with caution as different species
accumulate Hg at different rates, and concentrations generally
increase with increasing age or length of the fish.

Hg was detected (> 0.01 pg/g THg ww) in all fish
collected and ranged from 0.014 to 1.95 pg/g ww; the median
value was 0.169 pg/g ww (table 3A). The highest fish-Hg
concentrations among all sampled sites generally were for
fish collected from forest- or wetland-dominated coastal-plain
streams in the eastern and southeastern United States and from
streams that drain gold- or Hg-mined basins in the western
United States (fig. 5). The highest value (1.95 pg/g ww)
was from a composite sample of smallmouth bass from the
Carson River at Dayton, Nev., a site in a basin with known Hg
contamination from historical gold mining. The next highest
value (1.80 pg/g ww) was from a composite of largemouth
bass from an unmined basin—the North Fork Edisto River
near Fairview Crossroads, S.C. Largemouth, smallmouth, and
spotted bass had the highest mean and median concentrations,
whereas brown trout, rainbow-cutthroat trout, and channel
catfish had the lowest. Concentrations of Hg in trout were
generally low compared to those in all other sampled fish,
and the median value was less than 0.1 pg/g ww (table 3A).
Fish-Hg concentrations were less than about 0.33 pg/g ww
at 75 percent of sites and less than about 0.60 pg/g ww at
90 percent of sites (fig. 6).

Table 2. Summary of fish species sampled for mercury in U.S.
streams, 1998-2005.

[Abbreviations: n, number of sites where fish species was collected; game-
fish species shown in bold]

Family Common name Latin name n
Bowfins  Bowfin Amia calva 1
Catfishes ~ White catfish Ameiurus catus 1

Yellow bullhead Ameiurus natalis 1
Brown bullhead Ameiurus nebulosus 2
Blue catfish Ictalurus furcatus 1
Channel catfish Ictalurus punctatus 12
Flathead catfish Pylodictis olivaris 2
Cichlids  Blackchin tilapia  Sarotherodon 1
melanotheron
Minnows Common Carp Cyprinus carpio 1
Creek chub Semotilus atromaculatus 1
Perches Sauger Sander canadensis 1
Walleye Sander vitreus 2
Pikes Chain pickerel Esox niger 6
Sculpins  Slimy sculpin Cottus cognatus 2
Suckers White sucker Catostomus commersonii 1
Sunfishes Roanoke bass Ambloplites cavifrons 1
Rock bass Ambloplites rupestris 17
Redbreast sunfish  Lepomis auritus 8
Green sunfish Lepomis cyanellus 8
Green X Longear  Lepomis cyanellus x L. 1
Sunfish (hybrid) megalotis
Pumpkinseed Lepomis gibbosus 18
Bluegill Lepomis macrochirus 8
Longear sunfish Lepomis megalotis 1
Shoal bass Micropterus cataractae 2
Red-eyed bass Micropterus coosae 1
Smallmouth bass  Micropterus dolomieu 60
Spotted bass Micropterus punctulatus 14
Largemouth bass  Micropterus salmoides 62
Black crappie Pomoxis nigromaculatus 2
Trout Cutthroat trout Oncorhynchus clarkii 12
Rainbow trout Oncorhynchus mykiss 14
Mountain whitefish Prosopium williamsoni 3
Brown trout Salmo trutta 22
Dolly Varden Salvelinus malma 2

Total number of fish sampling sites 291
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Figure 6.

Frequency distribution of total mercury concentrations in fish, 1998—

2005, showing the percentage of samples that equalled or exceeded benchmark
or guideline concentrations. [USEPA methylmercury criterion for human health
(U.S. Environmental Protection Agency, 2001) = 0.3 png/g wet weight; concern
level for piscivorous mammals (Yeardley and others, 1998) = 0.1 ug/g wet weight.]

Distributions of length-normalized THg concentrations
for the top four fish species collected (largemouth bass,
smallmouth bass, rainbow-cutthroat trout, and brown trout)
are each shown separately on U.S. maps in figures 7 through
10. Largemouth bass were collected across the broadest area
of all fish species but were mostly in eastern and southern
U.S. streams (fig. 7). The highest length-normalized THg
concentrations in largemouth bass were found in coastal
streams in unmined basins of Louisiana, Georgia, Florida,
and North and South Carolina; one stream in a mined basin
from California was in this group of highest fish THg, but
concentrations at this site were lower than at most of the
coastal unmined sites in the group. In contrast, smallmouth
bass were not collected in the southern part of the United
States but instead were commonly collected in the upper
Midwest and northeastern United States (fig. 8); the highest
length-normalized THg concentrations were at western sites

in mined basins, but also from the Hudson River in New York.
Rainbow and cutthroat trout were collected only in western
States and were the primary target top-predator fish for sites
in Oregon and Washington (fig. 9). Because of their similar
habitats, feeding habits, and ability to hybridize where their
ranges overlap, these two species were combined for purposes
of data analysis. The highest length-normalized THg values in
rainbow-cutthroat trout were found at stream sites in mined,
urban, and geothermally affected basins in tributaries to the
Willamette Basin in western Oregon, and in North Creek near
Bothell, Wash., an urban site on a tributary to Puget Sound.
Brown trout were collected in isolated areas across the United
States, and the highest length-normalized THg concentrations
for this fish species were at several sites in mined basins of
Colorado and Nevada and in three unmined, undeveloped
basins of southern California, Colorado, and New York

(fig. 10).
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Bed Sediment

With the exception of sites in mined basins, many high
THg concentrations in bed sediment were in the northeast;
however, values in the top quartile of THg concentrations were
scattered across the United States (fig. 11). Concentrations of
THg in bed sediment (dry-weight basis) ranged from 0.84 to
4,520 ng/g (table 3B). Concentrations were less than about 80
ng/g THg at 75 percent of sites and less than about 250 ng/g at
90 percent of sites (fig. 12A).

Concentrations of MeHg in bed sediment ranged from
0.01 to 15.6 ng/g (table 3B). The highest MeHg values were
from a group of New England coastal streams, including
sites in mined as well as unmined basins (fig. 13). Some of
these New England streams, such as the Sudbury River in
Massachusetts, are unmined but known to have historical
industrial contamination of Hg in the basin (Massachusetts
Department of Environmental Protection, 1995; Flannagan
and others, 1999; Waldron and others, 2000; Wiener and
Shields, 2000; Chalmers, 2002). About 75 percent of all MeHg
values were less than 2 ng/g, and 90 percent of concentrations
were less than about 5 ng/g (fig.12B).

Table 3B. Summary statistics for mercury in U.S. streams, 1998-2005: Total and methylmercury and ancillary chemical characteristics

of bed sediment.

[Mercury concentrations are on a dry-weight basis. Abbreviations: ng/g, nanograms per gram; pg/g, micrograms per gram; n, number of samples]

Parameter Site grouping Mean Median Std Dev Minimum Maximum n Units Comparison
Methylmercury All sites 1.65 0.510 2.54 0.01 15.6 344 ng/g No significant
Sites in unmined basins  1.73 0.510 2.62 0.01 156 257 difference
Sites in mined basins 1.41 0.516 2.28 0.04 14.6 87
Total mercury All sites 110 31.8 343 0.84 4,520 345 ng/g Mined > Unmined
Sites in unmined basins  88.7  30.3 243 0.90 2,480 259 (p<0.01)
Sites in mined basins 175 48.5 539 0.84 4,520 86
Methyl/Total mercury All sites 3.24 1.60 4.68 0.020 41.0 337  Percent Unmined > Mined
Sites in unmined basins  3.26 1.72 4.58 0.020 41.0 253 (p<0.05)
Sites in mined basins 3.18 1.27 5.01 0.024 24.8 84
Loss-on-ignition All sites 7.38 4.26 8.14 0.11 435 327  Percent No significant
(LOD) Sites in unmined basins ~ 8.12  4.50 8.78 0.11 435 254 difference
Sites in mined basins 4.78 3.51 4.52 0.50 27.7 73
Methylmercury/LOI ~ All sites 0.227  0.137 0.300  0.0040 2.56 325 (ng/g)/  Mined > Unmined
Sites in unmined basins ~ 0.195  0.125 0.255  0.0040 2.56 252 percent (p<0.001)
Sites in mined basins 0.338  0.201 0.402 0.0116 1.83 73
Total mercury/LOI  All sites 253 6.61 129 0.15 1,940 325  (ng/g))  Mined > Unmined
Sites in unmined basins  10.1 5.91 145 0.15 122 253 percent (p<0.0001)
Sites in mined basins 78.6 10.5 267 <0.58 1,940 72
Acid-volatile sulfide All sites 84.9 5.34 235 <0.01 2,630 252 ng/s No significant
Sites in unmined basins  89.9 5.03 258 <0.01 2,630 187 difference
Sites in mined basins 70.4 6.58 149 0.01 690 65
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IN NANOGRAMS PER GRAM DRY WEIGHT

METHYLMERCURY IN BED SEDIMENT,
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Spatial Distribution of Mercury in Fish, Bed Sediment, and Stream Water
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Figure 12. Frequency distribution of mercury concentrations in bed sediment,
1998-2005, showing the percentage of samples that equalled or exceeded benchmark
or guideline concentrations; A, Total mercury; B, Methylmercury. [Probable Effect
Concentration, consensus-based (MacDonald and others, 2000) = 1,060 ng/g, dry weight;
Threshold Effect Concentration, consensus-based (MacDonald and others, 2000) = 180
ng/g dry weight.]

A

21



Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 1998-2005

22

['(81dund) pp 03 |enba Jo ueyy ta1ealb pue ‘(paJ) gg 01 G/ ‘(abuelto) ¢/ 031 0G
‘(mo[1aA) g 01 GZ ‘(8UYM) $Z 03 0 :UMOYS SB|1IUBIIBJ] "G00Z—8661 ‘IUBWIPaS paq ul suoiesjuaauod AnasawjAylaw jo uonnguisip jeneds gl ainbi4

v 9 S1 Y0’ . SHALINOTIN 00Z 00L 0
STUN 002 001 0 oBl
V  wsawr @ i Q T
< o0€L eo_,: oo_m— om_uw— omD 2081
. . Q
v weatso o ~“Q - SHILINOTIN 005 0SZ O
— o 4 o _I-I_l—-l_.-l—l_
v 050 01 4170 @) . _ o ST oz o
o851 o091 ° o0
v €001 10°0 O Y
PIUIA pautuupy | m_m_m_._.m___>_o.___v_ oo_o_ F_ T oﬁ_u_m TR M_
JYSM A1p weas 13d sweagouru ul L= STTIN000'L 00 0 ®
“JUIWIPIAS Paq ‘AINIIIWIAYIIA °
o0
NOLLVNV1dXd v
L

v\ 11
o0EL .06l 0Ll Fo0LL

Sy

SYILINOTIN 00L 0G5 0

ST 00L 06
o0




Spatial Distribution of Mercury in Fish, Bed Sediment, and Stream Water 23

Stream Water

There was wide variation in concentrations of THg
in unfiltered water across the United States, as one might
expect for a dataset that included sites that were relatively
pristine to sites in gold- or Hg-mined basins (table 3C;
fig. 14). Concentrations of unfiltered THg ranged from 0.27
to 446 ng/L, and the median value was 2.09 ng/L. THg
concentrations were less than about 4 ng/L at 75 percent
of sites and less than about 9 ng/L at 90 percent of sites
(fig. 15A).

Concentrations of MeHg in unfiltered water were
somewhat less variable than for THg across sites (fig. 16).
Values ranged from less than 0.01 to 4.11 ng/L, and the

median MeHg concentration was 0.11 (table 3C). MeHg
concentrations were less than about 0.2 ng/L at 75 percent of
the sites and less than about 0.4 ng/L at 90 percent of sites
(fig. 15B). Moreover, MeHg concentrations at 97 percent of
the sites were less than 0.8 ng/L, which is consistent with
findings of Krabbenhoft and others (2007), who reviewed

the literature and found that most surface waters had MeHg
concentrations in the range of approximately 0.04 to 0.8 ng/L
(St. Louis and others, 1994; Hurley and others, 1995; Babiarz
and others, 1998; Bodaly and others, 1998; Gilmour and
others, 1998; Krabbenhoft and others, 1999).

Table 3C. Summary statistics for mercury in U.S. streams, 1998-2005: Total and methylmercury and ancillary water quality

characteristics of unfiltered stream water.

[Values equal to 1/2 minimum reporting limits were substituted for censored values in computations. Abbreviations: DOC, dissolved organic carbon; UV,
ultraviolet absorbance at 254 nm; SUVA, specific UV absorbance at 254 nm; nm, nanometers; (L/mg C)/m, liters per milligram carbon per meter; ng/L,
nanograms per liter; mg/L, milligrams per liter; uS/cm, microsiemens per centimeter at 25 degrees Celsius; n, number of samples]

Parameter Site grouping Mean Median StdDev  Min Max n Units Comparison

Methylmercury All sites 0.19 0.11 0.35 <0.010 4,11 337 ng/L No significant
Sites in unmined basins 0.20 0.11 0.37 <0.010 4.11 257 difference
Sites in mined basins 0.18 0.10 0.31 <0.010 2.02 80

Total mercury All sites 8.22 2.09 32.8 0.27 446 336 ng/L Mined > Unmined
Sites in unmined basins 2.96 1.90 5.29 0.27 75.1 250 (p<0.0001)
Sites in mined basins 23.5 3.79 62.1 0.48 446 86

Methyl/Total mercury All sites 7.08 4.60 8.18 0.02 81.5 328 Percent Unmined > Mined
Sites in unmined basins 7.46 5.35 6.72 0.19 46.8 249 (p<0.0001)
Sites in mined basins 5.87 2.37 11.6 0.02 81.5 79

Specific conductance All sites 389 247 493 15.6 6,080 349 uS/cm Mined > Unmined
Sites in unmined basins 349 246 467 15.6 6,080 263 (p<0.001)
Sites in mined basins 513 252 551 34.1 2,350 86

pH All sites 7.48 7.50 0.73 3.30 10.1 352  Standard units Mined > Unmined
Sites in unmined basins 7.38 7.42 0.72 5.50 10.1 264 (p<0.01)
Sites in mined basins 7.78 7.90 0.70 3.30 9.00 88

Suspended sediment ~ All sites 75.4 7.00 501 0 6,170 177 mg/L No significant
Sites in unmined basins 26.3 7.00 53.1 0 391 130 difference
Sites in mined basins 212 8.00 966 1 6,170 47

DOC All sites 5.09 3.80 6.49 0.34 76.9 349 mg/L Unmined > Mined
Sites in unmined basins 5.82 438 7.29 0.34 76.9 261 (p<0.0001)
Sites in mined basins 2.90 2.61 1.77 0.40 11.6 88

uv All sites 0.15 0.11 0.17 0.003 1.2 138 Dimensionless Unmined > Mined
Sites in unmined basins 0.18 0.13 0.18 0.005 1.2 107 (p<0.001)
Sites in mined basins 0.08 0.07 0.05 0.003 0.3 31

SUVA All sites 2.92 2.80 1.43 0.30 15.5 138 (L/mg C)/m No significant
Sites in unmined basins 2.92 2.90 0.91 0.60 5.7 107 difference
Sites in mined basins 2.92 2.60 2.52 0.30 15.5 31

Sulfate All sites 45.9 10.9 123 0.09 954 343 mg/L Mined > Unmined
Sites in unmined basins 28.3 9.95 73.7 0.09 954 263 (p<0.01)
Sites in mined basins 104 16.1 208 0.47 860 80
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Figure 15. Frequency distribution of mercury concentrations in unfiltered water, 1998—2005,
showing the percentage of samples that equalled or exceeded benchmark or guideline
concentrations; A, Total mercury; B, Methylmercury. [Great Lakes States 30-day standard for fish-
eating wildlife (U.S. Environmental Protection Agency,1997) = 1.3 ng/L.]
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Comparisons to Benchmarks and
Guidelines

Hg concentrations in fish at most sites (71 percent, 208 of
291 sites) exceeded the value of 0.1 pg/g THg (ww) that is of
concern for the protection of fish-eating mammals, including
mink and otters (fig. 6; Yeardley and others, 1998; Peterson
and others, 2007). Concentrations at 27 percent of the sites
(79 of 291) exceeded 0.3 pg/g THg ww in fish. As mentioned
earlier, most of the Hg found in fish tissue is MeHg (Huckabee
and others, 1979; Grieb and others, 1990; Bloom 1992), and
a concentration of 0.3 pg/g MeHg ww in fish is the USEPA
MeHg criterion for the protection of human health (U.S.
Environmental Protection Agency, 2001, 2009).

Two sediment-quality guidelines were used to evaluate
THg concentrations in bed sediment in our study. These
consensus-based concentrations of MacDonald and others
(2000) are currently considered to be the best predictive
guidelines. However, MacDonald and others (2000) noted
that the consensus-based Threshold Effect Concentration
(TEC) for THg correctly predicted toxicity only 34 percent
of the time, whereas the consensus-based Probable Effect
Concentration (PEC) correctly predicted toxicity 100 percent
of the time although based on only 4 values. Because the
primary toxic form of Hg is MeHg, THg-based toxicity
estimates are not expected to be highly accurate; however,
MeHg-based guidelines are unavailable at this time. In our
study, concentrations of THg at 12 percent of sites (40 of 345
sites) exceeded the TEC of 180 ng/g. Total Hg in bed sediment
from six of the sites exceeded the PEC of 1,060 ng/g; these
sites included two western sites in mined basins (South
Fork Coeur d’Alene River and Carson River below Carson
Diversion Dam) and four sites from the northeast (Mousam
River in Maine; Aberjona, Assabet, and Neponset Rivers near
Boston, Massachussetts). These results indicate the potential
for toxic effects on benthic communities at some sites sampled
as part of this study.

Because of the complicated nature of Hg methylation and
bioaccumulation, there are currently no national guidelines
for protection of wildlife from exposure to Hg in water.
However, of 336 sites with data for THg in unfiltered water,
THg at three-quarters of the sites exceeded 1.3 ng/L, the
30-day standard derived by the USEPA for Great Lakes
States fish-cating wildlife and slightly less than the value of
1.8 ng/L derived for protection of eagles (U.S. Environmental
Protection Agency, 1995a, 1995b, 1997; Wolfe and others,
2007). Concentrations of unfiltered THg at 14 sites exceeded
26 ng/L, the Interim Canadian Water Quality Guideline for the
protection of freshwater life (Environment Canada, 2005). All

but one site with unfiltered THg concentrations greater than
26 ng/L were in the western United States, in basins where
gold and (or) Hg mining took place in the past. The exception,
Whitewood Creek above Lead, S.D., was within the highly
mineralized area of the Black Hills of South Dakota (Norton,
1975; Goddard, 1988). There are gold mines in the area that
could have contributed to high Hg concentrations, but some
sites in this geochemically rich region are likely to be naturally
enriched in Hg. The unfiltered THg concentration above Lead
was similar to that found downstream at Deadwood (75.1 and
77.8 ng/L, respectively). In contrast to the sampling timing for
the majority of our synoptic sites, the South Dakota sampling
was intentionally timed to catch runoff with high-suspended
sediment loads, when most of the Hg was in the particulate
phase (Steve Sando, U.S. Geological Survey, oral commun.,
October 2007).

Comparisons Among Fish, Bed
Sediment, and Stream Water

Because of bioaccumulation and biomagnification, Hg
concentrations in fish were several orders of magnitude higher
than in stream water. Overall, results of our study agreed
with results in the literature for lakes and other waterbody
types that have described relatively large differences in
mean concentrations among fish, bed sediment, and water
(Wiener and Stokes, 1990; Wiener, 1995; U.S. Environmental
Protection Agency, 1997; Mason and others, 2000). We found
a high accumulation of Hg in top-predator fish compared to
stream water and bed sediment. This accumulation resulted in
Hg concentrations in top-predator fish that were more than six
orders of magnitude higher than concentrations of Hg in the
water that the fish inhabit (fig. 17).

For all fish species and sites combined, the mean Biota
Accumulation Factor (BAF, in log, ; see equation 1, p. 8) for
THg in fish relative to MeHg in water was 6.33 L/kg (range
=4.36 to 7.59) and for THg in fish relative to MeHg in bed
sediment was 3.42 (range = 1.52 to 5.09) (table 4A). The
BAF values determined in our studies were not significantly
different at sites in mined basins when compared to sites in
unmined basins. However, mean and median BAF values
were lower for bed sediment than for water (tables 4B and
4C). Our mean water BAF value of 6.33 L/kg was slightly
lower than the national mean BAF value of 6.40 L/kg reported
by the USEPA for Hg in riverine fish relative to water (U.S.
Environmental Protection Agency, 2000).
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Table 4A. Summary statistics for mercury Biota Accumulation Factors (BAFs) for fish from U.S. streams, 1998—2005: BAFs for fish with
respect to water and bed sediment, all species.

[Abbreviations: BAF, Biota Accumulation Factor; water BAF values are for THg in fish with respect to MeHg in filtered water, in log  (liters per kilogram);
sediment BAF values are for THg in fish with respect to MeHg in bed sediment, in log, ; (grams per gram); Std Dev, standard deviation; n, number of samples]

Parameter Site grouping Mean Median Std Dev Minimum  Maximum n

BAF (water) All sites 6.33 6.33 0.50 4.36 7.59 166
Sites in unmined basins 6.32 6.30 0.50 4.36 7.59 128

Sites in mined basins 6.36 6.35 0.48 5.46 7.47 38

BAF (sediment) All sites 342 343 0.76 1.52 5.09 229
Sites in unmined basins 345 343 0.80 1.52 5.09 175

Sites in mined basins 3.32 3.49 0.61 1.92 4.42 54
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Table 4B. Summary statistics for mercury Biota Accumulation Factors (BAFs) for fish from U.S. streams, 1998—2005: BAFs for fish with
respect to water, individual species.

[Abbreviations: BAF, Biota Accumulation Factor; water BAF values are for THg in fish with respect to MeHg in filtered water, in log,  (liters per kilogram);
Std Dev, standard deviation; ND, no data; *, insufficient data to compute summary metric; n, number of samples]

Parameter Site grouping Mean Median Std Dev Minimum  Maximum n
Largemouth bass All sites 6.61 6.61 0.46 5.22 7.59 38
Sites in unmined basins 6.58 6.60 0.47 5.22 7.59 33
Sites in mined basins 6.82 6.81 0.38 6.34 7.39 5
Smallmouth bass All sites 6.32 6.37 0.48 5.25 7.08 20
Sites in unmined basins 6.41 6.38 0.43 5.25 7.08 15
Sites in mined basins 6.02 5.93 0.53 5.46 6.70 5
Rock bass All sites 6.18 6.24 0.42 5.38 7.00 11
Sites in unmined basins 6.18 6.24 0.42 5.38 7.00 11
Sites in mined basins ND ND ND ND ND ND
Spotted bass All sites 6.59 6.52 0.35 6.09 7.32 12
Sites in unmined basins 6.52 6.40 0.38 6.09 7.32 8
Sites in mined basins 6.73 6.72 0.27 6.42 7.07 4
Pumpkinseed All sites ND ND ND ND ND ND
Sites in unmined basins ND ND ND ND ND ND
Sites in mined basins ND ND ND ND ND ND
Rainbow-cutthroat trout All sites 6.31 6.27 0.40 5.54 7.47 26
Sites in unmined basins 6.26 6.29 0.36 5.54 6.92 19
Sites in mined basins 6.43 6.26 0.51 5.92 7.47 7
Brown trout All sites 6.04 6.04 0.42 5.25 6.96 18
Sites in unmined basins 5.87 6.03 0.34 5.25 6.25 9
Sites in mined basins 6.21 6.34 0.44 5.63 6.96 9
Channel catfish All sites 6.12 6.02 0.36 5.56 6.76 11
Sites in unmined basins 6.08 6.00 0.36 5.56 6.76 9
Sites in mined basins * * * 5.84 6.02 2
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Table 4C. Summary statistics for mercury Biota Accumulation Factors (BAFs) for fish from U.S. streams, 1998-2005: BAFs for fish with
respect to bed sediment, individual species.

[Abbreviations: BAF, Biota Accumulation Factor; sediment BAF values are for THg in fish with respect to MeHg in bed sediment, in log,, (grams per gram);
Std Dev, standard deviation; ND, no data, *, insufficient data to compute summary metric; n, number of samples]

Parameter Site grouping Mean Median Std Dev Minimum  Maximum n
Largemouth bass All sites 3.99 4.08 0.67 2.37 5.09 51
Sites in unmined basins 4.08 4.26 0.71 2.37 5.09 42
Sites in mined basins 3.59 3.57 0.23 3.12 391 9
Smallmouth bass All sites 343 3.55 0.63 1.73 4.96 44
Sites in unmined basins 3.41 3.40 0.65 1.73 4.96 36
Sites in mined basins 3.50 3.72 0.52 2.39 3.87 8
Rock bass All sites 3.24 3.20 0.71 2.09 4.61 14
Sites in unmined basins 3.24 3.20 0.71 2.09 4.61 14
Sites in mined basins ND ND ND ND ND ND
Spotted bass All sites 4.07 4.07 0.35 3.53 4.51 14
Sites in unmined basins 423 437 0.32 3.53 451 9
Sites in mined basins 3.76 3.78 0.14 3.54 3.90 5
Pumpkinseed All sites 1.91 2.04 0.26 1.52 2.16 5
Sites in unmined basins 1.91 2.04 0.26 1.52 2.16 5
Sites in mined basins ND ND ND ND ND ND
Rainbow-cutthroat trout All sites 3.16 3.13 0.51 2.20 4.10 26
Sites in unmined basins 3.18 3.15 0.47 2.20 3.98 19
Sites in mined basins 3.12 2.93 0.66 2.35 4.10 7
Brown trout All sites 3.03 2.97 0.63 1.92 4.25 17
Sites in unmined basins 3.01 2.75 0.52 2.51 3.82 8
Sites in mined basins 3.04 3.04 0.75 1.92 425 9
Channel catfish All sites 2.89 2.75 0.46 2.38 3.67 11
Sites in unmined basins 2.90 2.75 0.46 2.38 3.67
Sites in mined basins * * * 2.38 3.32 2

Comparisons Between Mined and
Unmined Basins

All sites in Hg-mined basins and most sites in gold-

mined basins were in the western half of the United States
(fig. 3). Across all sites, fish Hg, as wet weight (raw or length-
normalized), was not significantly different between sites in
unmined basins and mined basins, except for smallmouth bass.
That exception was solely due to a single high outlier for the
composite sample of smallmouth bass from the Carson River

at Dayton, Nev., a mined basin. Concentrations of MeHg
in bed sediment and unfiltered stream water from sites in

unmined basins were not significantly different from those in
mined basins; however, THg concentrations were significantly
higher in bed sediment and stream water from sites in mined

basins (tables 3B.C; fig.18).

It also should be noted that the percentages of MeHg

(percent MeHg/THg) in bed sediment and unfiltered water
were significantly higher in unmined basins (tables 3B. 3C).

The percentage of MeHg is considered to be a useful

estimate of methylation efficiency (Gilmour and others,

1998). Although THg concentrations in unfiltered water

were higher as a group from streams in mined basins, MeHg

concentrations from many of these same streams were not

high relative to those at other sampled sites. More importantly,

water from many sites in unmined basins with relatively low

THg was relatively high in MeHg. This finding emphasizes the

importance of Hg methylation in these ecosystems.
Examination of Hg relations to environmental

characteristics for fish species from sites in mined basins

was limited to largemouth bass and brown trout because of

small sample sizes for other species. Concentrations of Hg

in largemouth bass at these sites increased with increasing

suspended sediment (r; = 0.98, p <0.05, n=5) and THg in

unfiltered water (r, = 0.67, p <0.05, n =9). In contrast, Hg

in brown trout at sites in mined basins increased significantly

with increasing MeHg concentration in unfiltered water

(r;=0.93,p<0.01,n=7).
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Factors Related to Mercury
Bioaccumulation in Fish

The remainder of this report describes relations between
environmental characteristics and length-normalized Hg
concentrations (micrograms per gram per meter) in unmined
basins for the fish species that were most commonly collected:
largemouth bass, smallmouth bass, rainbow-cutthroat
trout, brown trout, pumpkinseed, rock bass, spotted bass,
and channel catfish. Data for sites in mined basins were
removed from these analyses to allow for evaluation of
factors other than mining that could be important in fish Hg
bioaccumulation. Most of the 89 sites in mined basins were
in just two LULC categories: undeveloped (61 sites) or mixed
(21 sites), and for several fish species—especially brown
trout—the land-use relation often became weak or nonexistent
when sites in mined basins were included.

(8) (11) (10)
1 1 !

Comparisons Among Land-Use/Land-Cover
Categories

Significant differences among LULC categories were
found for unmined basins (but not for mined basins) with
respect to Hg. For unmined sites, largemouth bass from
predominantly undeveloped or mixed-land-use basins were
significantly higher in Hg than those from urban basins and
were somewhat higher (p = 0.059) than those from agricultural
basins (fig. 19); a similar difference was seen between
undeveloped and urban basins for brown trout. Spotted bass
from undeveloped basins were somewhat higher in Hg than
those from agricultural basins (p = 0.051). In contrast to fish
THg, bed sediment THg (whether normalized by LOI or not)
and AVS were higher at urban sites compared to agricultural,
undeveloped, or mixed-land-use sites. Although there were no
significant differences among LULC categories for MeHg in
bed sediment, the percentage of MeHg in bed sediment was
higher at undeveloped sites than at urban sites. Undeveloped
sites tended to have more wetland and forest cover in the
basin. Differences among LULC categories were not found for
THg or MeHg in unfiltered water.
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draining various land-use/land-cover categories, 1998-2005.



For those fish species with enough data available to test
subcategories within the undeveloped LULC category for
unmined sites (largemouth bass, smallmouth bass, rock bass,
and brown trout), only largemouth bass showed significant
differences between two subcategories: Hg concentrations
in largemouth bass from sites in forested areas with high
percentages of wetland (>15 percent) were significantly
higher than in largemouth bass from sites in forested areas
with low percentages of wetland (<10 percent) (means +
standard deviations were 2.92 + 0.79 (ug/g)/m and 1.28 +
0.05 (ug/g)/m, n = 6 and 3, respectively). The comparison
should be viewed with caution due to the small sample sizes.

Fish Species-Specific Relations with
Environmental Characteristics

Relations between fish Hg and environmental
characteristics varied in their significance with the group of
fish examined (table 5). Fish length correlated positively with
Hg concentration for largemouth bass, rock bass, and rainbow-
cutthroat trout, so length-normalized Hg concentrations for all
fish were used in comparisons to environmental characteristics
(Boudou and Ribeyre, 1983; Ribeyre and Boudou, 1984;
Goldstein and others, 1996, Brumbaugh and others, 2001).
Perhaps because of differences in species spatial distribution,
as well as feeding habits, many statistically significant
relations to environmental characteristics were found for Hg in
largemouth bass (n = 52, unmined), whereas none were found
for smallmouth bass (n = 51, unmined). Sample numbers
of other fish species were more limited (n < 20, unmined),
and significant relations also were less common than for
largemouth bass. The apparent absence of relations for these
other fish species may have been due in part to small sample
sizes. Most bass samples in our study were from the eastern
and southern United States. Largemouth bass appeared to
be a good indicator for Hg in top-predator fish on the basis
of (1) its ability to accumulate Hg from a predominantly
piscivorous diet; (2) relations between Hg in largemouth bass
and LULC, and MeHg in water or bed sediment; and (3) its
generally ubiquitous distribution and status as a game fish.
Factors related to Hg bioaccumulation in largemouth bass
from unmined basins were subsequently examined in greater
detail.

Stepwise multiple-linear regression revealed that
increasing length-normalized Hg concentrations in largemouth
bass from unmined basins were primarily related to increasing
basin percentages of evergreen forest and woody wetland,
especially with increasing proximity of evergreen forest and
woody wetland to the sampling site (adjusted r2 = 0.66):

Factors Related to Mercury Bioaccumulation in Fish 3

2
In[Hg; ] =-0.592 + 0.0319 arcsin [L,,] @

+0.0194 arcsin [L,,,, ],
where
Hg, \pis the length-normalized THg concentration

in largemouth bass, in micrograms per gram
per meter,

L., is the distance-weighted percentage of basin
LULC that is evergreen forest, and

L, 1s the distance-weighted percentage of basin
LULC that is woody wetland.

This equation underscores the sensitivity of these two
LULC types in comparison to other types with regard to
Hg bioaccumulation in largemouth bass. Evergreen forest
and woody wetland were positively correlated with each
other (r, = 0.60) in the largemouth bass dataset even though
these characteristics were uncorrelated in the larger dataset.
Redundancy Analysis (RDA) confirmed the significance
of these two characteristics and additionally indicated that
increasing amounts of MeHg in unfiltered stream water and
LOI normalized MeHg concentrations in bed sediment, and
decreasing pH and dissolved sulfate, were important for
explaining variability in fish-Hg concentrations (fig. 20).
Normalizing MeHg in bed sediment by organic content (as
measured by LOI) provided a way to account for differences
in the Hg concentrations of bed sediment collected from zones
of inorganic sediment as compared to zones of organic muck.
The similar results from multiple regression and RDA confirm
the importance of evergreen forest, woody wetland, and
MeHg in bed sediment and stream water for predicting THg in
largemouth bass. Details of these relations are provided below.
The strength and direction of relations to LULC varied
with fish species examined. As mentioned above, as the
percentage of evergreen forest and woody wetland in the
basin increased, Hg concentrations in largemouth bass also
increased (figs. 21A, B). When the percentages of woody
wetland were distance-weighted, r, values for largemouth
bass increased from 0.62 to 0.72 (table 5). This indicates that
the closer woody wetland was to the sampling site, the higher
the concentration of fish Hg. Spotted bass and brown trout
Hg were also positively correlated with evergreen forest,
including distance-weighted evergreen forest (fig. 21C, 21D).
Hg in smallmouth bass did not correlate significantly with
either forest or wetland. In general, positive relations were
also seen between fish Hg and either total forest or total
wetland in the basin; however, the relations were weaker than
with evergreen forest or woody wetland.
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Table 5. Spearman rank correlation coefficients (r) for relations between length-normalized total mercury
in composite samples of fish and selected environmental characteristics for U.S. streams, 1998—2005.

[Definitions of variable abbreviations are listed in Appendix 1. Values are for sites in unmined basins only. Color coding of r_
based on p values, p < 0.001 (pink), p < 0.01 (orange), and p < 0.05 (yellow). Abbreviations: n, number of samples available for
correlation; *, insufficient n or too many values less than the detection limit]

= @

£ £ 2 - S 5 -

S -] @ = A = o o

=] =] b4 £ S ® = -

g E = = = S o = 2

S2 Tg % £ E E£ 3 g

58 55 & & & € 3 & 5

Maximum n 52 51 17 9 16 19 13 10

Streamwater
pH -0.43 -0.03 -0.14 0.24 0.30 0.18 -0.25 -0.49
DOC 0.13 0.01 -0.61 -0.45 0.04 0.28 -0.60 0.15
Sulfate -0.54 -0.23 -0.04 -0.52 -0.41 0.65 -0.65 0.18
UMeHg 0.50 0.19 -0.04 -0.07 0.79 0.24 -0.26 -0.12
UTHg 0.37 0.09 -0.24 -0.17 -0.52 0.54 -0.35 0.21
UMeHg/UTHg 0.36 0.21 -0.42 0.45 0.86 -0.38 -0.52 -0.19
Bed sediment
SMeHg 0.07 -0.01 0.13 0.47 0.67 0.41 0.31 -0.20
STHg -0.09 -0.08 0.35 -0.10 -0.17 0.32 -0.26 -0.08
SMeHg/STHg 0.32 0.04 -0.04 0.73 0.74 0.16 0.85 0.12
SMeHg/LOI 0.35 0.01 -0.03 0.60 0.29 0.56 0.42 -0.27
STHg/LOI -0.03 -0.05 0.07 -0.23 -0.59 0.40 -0.77 0.03
Land use/land cover, percentage of basin area
SUM_FOREST 0.56 0.25 0.05 0.68 0.19 * 0.62 0.47
EVR FOREST 0.77 0.18 -0.25 0.72 0.44 * 0.82 0.39
EVR FOREST DW 0.77 0.16 -0.37 0.72 0.54 * 0.86 0.31
SUM_WETLAND 0.46 -0.19 -0.52 -0.12 0.25 0.15 -0.18 -0.21
WOODWETLAND 0.62 -0.28 -0.50 0.28 0.32 0.33 -0.19 -0.04
WOODWETLAND DW 0.72 -0.25 -0.42 0.17 0.35 0.33 -0.25 -0.15
HERBWETLAND -0.01 -0.06 -0.51 -0.15 -0.14 -0.07 -0.38 -0.19
HERBWETLAND DW 0.06 -0.03 -0.40 -0.15 -0.04 -0.06 -0.37 -0.13
SUM_UNDEVELOPED 0.58 0.22 -0.11 0.70 0.20 -0.60 0.67 0.31
SUM_URBAN -0.48 -0.20 0.13 -0.20 -0.16 * -0.58 0.25
POPDENO0O -0.50 -0.22 0.37 -0.60 -0.39 * -0.75 0.27
SUM_AGRICULTURE -0.14 -0.24 0.14 -0.72 0.24 * -0.78 -0.31
ROW_CROP 0.10 -0.31 0.05 -0.70 0.30 0.08 -0.65 -0.39
ROW_CROP DW 0.11 -0.31 0.05 -0.70 0.22 * -0.66 -0.30
Other

AWET.PRE 0.28 -0.26 -0.01 0.53 -0.46 * -0.31 0.10

ATOT.SEI -0.16 0.02 0.76 * 0.09 -0.20 -0.32 0.12
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Figure 20. Redundancy Analysis (RDA) showing relative importance of selected environmental characteristics (blue arrows and
labels) to concentrations of mercury in largemouth bass (green arrows and labels), 1998—2005. (Arrows extending in the same
direction indicate a positive correlation, arrows in opposite directions indicate a negative correlation, and arrows at right angles
indicate no correlation; arrow length indicates the relative importance of the variable in the relation.)

LULC data that correlated negatively with fish Hg
included the percentage of urban developed land and Census
2000 population density (fig. 21E, largemouth bass; fig 21F,
brown trout), and percentage of row crops (brown trout only;
table 5). Chalmers (2002) in the New England Coastal Basins
regional study data included here, also found a negative
correlation (r, = -0.72) between fish Hg and population
density. Brumbaugh and others (2001) found a negative
correlation with urban land and fish Hg, although most of
the fish sampled from urban streams were largemouth or
smallmouth bass. The above results underscore the importance
of considering LULC and especially its proximity to the
sampling site when interpreting fish-Hg concentrations.

Although fish Hg in largemouth bass, spotted bass,
pumpkinseed, brown trout, and rainbow-cutthroat trout
correlated with various measures of bed sediment Hg, fish
Hg in smallmouth bass, rock bass, and channel catfish did not

(table 5). Fish Hg correlated with LOI only for pumpkinseed
(r;=0.58, p <0.05), whereas Hg in largemouth bass, spotted
bass, and rainbow-cutthroat trout correlated positively with
bed sediment MeHg as normalized by LOI (fig. 21G-211),
and, in general, these correlations were higher than with
bed-sediment MeHg concentrations that were not normalized
by LOI (table 5). An exception was found for pumpkinseed,;
fish Hg in pumpkinseed was more highly correlated with
bed-sediment MeHg concentrations not normalized by LOI
(fig. 21J). An estimate of Hg methylation potential, the
percentage of MeHg in bed sediment also correlated positively
with Hg in brown trout (fig. 21K), pumpkinseed (fig. 21L),
and spotted bass, but only weakly for largemouth bass.
Sediment-fish BAF values for several species decreased with
increasing LOI percentages and with AVS for largemouth bass

(fig. 22A-22F).
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Figure 21. Correlations between length-normalized mercury concentrations in fish and selected environmental
characteristics, 1998-2005. [Data for all sites shown, unmined and mined; however, Spearman rank correlation

coefficients (r ) are for unmined sites only.]
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For the 1998 National Mercury Pilot, Brumbaugh and
others (2001) showed a highly significant correlation between
length-normalized Hg in largemouth bass and MeHg in
unfiltered water (r,= 0.71, p <0.001). In our study, fish-Hg
concentrations also correlated positively with unfiltered MeHg
for largemouth bass (r, = 0.50; fig. 21M) and pumpkinseed
(r,=10.79; fig. 210), but the relation was not significant for
smallmouth bass (fig. 21N) or other fish species evaluated
(table 5). Fish Hg appeared to be similarly correlated with
filtered MeHg concentrations; however, some correlations
with this parameter must be viewed with caution because
filtered Hg data were available at far fewer sites than unfiltered
Hg data, and concentrations at many of these sites were below
detection limits. Fish Hg also correlated with THg in unfiltered
water, but generally more weakly than to MeHg; this relation
was positive for largemouth bass and rainbow-cutthroat
trout, and was negative for pumpkinseed (figs. 21P-21R).
Total Hg in filtered samples appeared to be a better predictor
of spotted bass Hg concentrations than MeHg in unfiltered
water, although it is MeHg in water that is accumulated in the
aquatic food web eventually to fish. Noise in the correlations
with MeHg in unfiltered water might be reduced with
increased water sampling, such as was done by Chasar and
others (2009). Multiple samples over a range of hydrologic
conditions, and possibly lower detection limits, would be
needed to improve correlations.

In general, length-normalized Hg concentrations in
fish correlated weakly to selected ancillary water chemistry
characteristics. Fish Hg in largemouth bass and brown
trout were negatively correlated with concentrations of
dissolved sulfate in water (figs. 21S, 21T). Sulfate may
exert concentration-dependent positive or negative effects
on Hg methylation and, therefore, bioaccumulation by fish
(Compeau and Bartha, 1983, 1987; Gilmour and others,

1992, 1998; Benoit and others, 2003). A negative correlation
with pH was found for Hg in largemouth bass only (r, =

-0.43; fig. 21U). Lower pH waters (more acidic) tend to be
associated with a greater partitioning of Hg to the dissolved
phase, enhancing Hg methylation, and resulting in higher rates
of Hg bioaccumulation (Watras and Bloom, 1992). Although
DOC and fish Hg directly correlated only in rock bass (table 5)
and brown trout (fig. 21V), water BAF values for largemouth
bass and brown trout decreased with increasing concentrations
of DOC in unfiltered water (figs. 22G, H). In contrast, Hg in
largemouth bass positively correlated with SUVA of DOC

(fig. 21W). This supports the importance of the indirect

and positive effect of DOC and DOC complexity in fish Hg
bioaccumulation, as also found by Chasar and others (2009)
for DOC and SUVA for top-predator fish.

With the exception of rock bass, no relation was
found between atmospheric THg deposition and fish-Hg
concentrations when examined at sites across the United
States (fig. 21X); however, variation in local environmental
characteristics in stream basins may confound evidence of
the potential effects of atmospheric deposition. The three
bass species that are widespread in the eastern half of the
United States (largemouth, smallmouth, and rock bass) were
examined further for relations to atmospheric THg deposition
by confining analyses to sites from mixed and undeveloped
LULG; sites from mined, urban, and agricultural LULC were
excluded to minimize confounding effects of nonatmospheric
Hg sources and land-use disturbances. Length-normalized
Hg in fish was compared to three estimates of Hg deposition:
total combined [sum of precipitation-weighted wet THg
deposition measured at MDN sites and modeled dry THg
deposition (Seigneur and others, 2004)]; total modeled [sum
of modeled wet and dry THg deposition from Seigneur and
others (2004)]; and wet only [precipitation-weighted wet THg
deposition measured at MDN sites]. In addition to the positive
correlation mentioned earlier for total modeled Hg deposition
with rock bass (fig. 21X), total combined deposition positively
correlated with rock bass Hg (not shown). The positive
relation for rock bass Hg with Hg deposition also remained
significant in the multiple regression model that included
evergreen forest and woody wetland abundance. Relations
between largemouth bass Hg levels and either total combined
or wet only Hg deposition were deemed not reliable because
four influential samples were in Kansas and Nebraska, where
the western U.S. average was used as an estimate of Hg
deposition. Given the lack of wet deposition measurements
in that part of the country we do not have confidence in the
accuracy of this estimate for Kansas and Nebraska. When the
four low-Hg deposition samples were excluded, there was
no significant relation. Relations for smallmouth bass with
atmospheric Hg were not significant.

Hammerschmidt and Fitzgerald (2006) examined a large,
historical data set for 25 States and found positive relations
between statewide average Hg in largemouth bass and wet
Hg deposition. Our site-based (rather than statewide) analysis
provides limited support for positive relation between fish-Hg
concentration and Hg deposition. One explanation for the
limited connection between Hg in fish and deposition in our
study is that variation in Hg methylation among ecosystems is
greater than the variation in Hg deposition, particularly in the
eastern United States, where most of our bass were sampled.
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Biota Accumulation Factors (BAF) for fish in relation to selected environmental characteristics,

1998-2005. [Data for all sites are shown, unmined and mined; however, Spearman rank correlation coefficients
(ry) are for unmined only. BAF values are in Log, ]
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Bed-Sediment Relations with
Environmental Characteristics

Higher concentrations of MeHg in bed sediment at
sites in unmined basins (n = 183) were significantly related
to higher LOI, THg, and AVS of the sediment, as shown in

equation 3 (adjusted r? = 0.73):

In[MeHgpg ] = - 2.857 + 0.925 In[LOT]

+0.247 In[THg g ]+ 0.048 In[AVS] ,

where

MeHgy; is the bed sediment MeHg concentration,

in nanograms per gram,

LOI is the loss-on-ignition of the bed sediment

in percent,

THgpg is the bed sediment THg concentration, in

nanograms per gram, and

AVS is the acid-volatile sulfide concentration,

in micrograms per gram.
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LOI was a strong predictor of MeHg in bed sediment
(r,=0.81, fig. 23A) and THg in bed sediment (r;=0.78;
table 6). Although bed sediment MeHg was near or below
detection at many sites, MeHg and THg were more highly
related in bed sediment (r, = 0.72) (fig. 23B, table 6) than in
unfiltered water (r, = 0.40). Krabbenhoft and others (1999)
also found a high positive correlation between bed sediment
MeHg and LOI, as well as with sediment organic carbon.
Recent work by Marvin-DiPasquale and others (2009) found
that MeHg in bed sediment from streams with predominantly
atmospheric Hg inputs was a function of sediment organic
content and the activity of Hg-methylating microbes. AVS
correlated positively with bed sediment MeHg and THg in our
study (fig. 23C) but contributed least to the predictive power
of equation 3. Key LULC categories, such as forest cover,
wetland, urban, and agriculture, were at most only weakly
correlated with Hg concentrations in bed sediment (table 6).

As atmospheric Hg concentrations increased,
concentrations of THg in bed sediment increased, and the
highest correlation (r, = 0.53) was found for Seigneur-modeled
dry atmospheric deposition with bed sediment THg (fig. 23D;
table 6); the correlation between THg and Seigneur-modeled
total (wet + dry) atmospheric deposition was lower, but still
significant (r, = 0.39).
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Figure 23. Correlations between mercury in bed sediment and selected environmental characteristics
in unmined basins, 1998—-2005. (rs, Spearman rank correlation coefficient; modeled mercury is based on
Seigneur and others, 2004.)
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Stream-Water Relations with
Environmental Characteristics

Stepwise multiple-linear regression indicated that higher
concentrations of MeHg in unfiltered water from sites in
unmined basins (n = 223) were primarily related to higher
DOC and THg of unfiltered stream water and, to a lesser
extent, higher percentages of MeHg in bed sediment, higher
percentages of total wetland (woody and herbaceous) in the
basin, and lower pH values of the water (adjusted r?= 0.61):

In[MeHg .., ] =- 1.664 + 0.573 In[DOC]
+0.384 In[THg,, .., ] —0.270 [pH]
+0.268 In[MeHg/THg ] )
+0.015 arcsin[L,, ],
where
MeHg,, ... is the MeHg concentration in unfiltered
water, in nanograms per liter,

DOC is the dissolved organic carbon
concentration in unfiltered water, in
milligrams per liter,

MeHg / THgq is the percentage of MeHg in bed
sediment,

THg,, ., i the THg concentration in unfiltered
water, in nanograms per liter, pH is
the pH value in unfiltered water, and

L,, is the percentage of total wetland in the
basin.

MeHg concentrations in unfiltered water correlated
positively with concentrations of DOC (r, = 0.59, p < 0.001)
and UV absorbance (r, = 0.67, p < 0.001) (fig. 24A, 24B;
table 6). UV absorbance has been suggested as an inexpensive
surrogate measure for Hg concentration in water because it
correlates highly with DOC and even more highly with the
types of DOC thought to complex most strongly with Hg
(George R. Aiken, U.S. Geological Survey, oral commun.,
2003). The correlation of unfiltered MeHg to SUVA (r, =
0.466, p <0.01) was not as strong. Similar but weaker
correlations were found between filtered MeHg concentrations
and DOC, UV absorbance, and SUVA. DOC, in turn,
correlated positively with hydric soils, total wetness index,
total wetlands, and precipitation-weighted atmospheric Hg
deposition, and it correlated negatively with average basin
elevation and average depth to the seasonally high water table.
Spearman correlations between MeHg and THg in water
ranged from r, = 0.54 in unfiltered water (fig. 24C) to 1, = 0.72
in particulate water samples (table 6). In addition, MeHg and
THg in unfiltered and particulate samples increased in relation
to total suspended-sediment concentration. A weak negative

relation was found between MeHg and pH in unfiltered water
(fig. 24D). The percentage of MeHg (percent MeHg/THg) in

unfiltered water was positively correlated with percent MeHg
in bed sediment (fig. 24E).

MeHg concentrations in unfiltered water were higher
at sites in basins with higher percentages of total wetland
(fig. 24F) and with both woody wetland and herbaceous
wetland (table 6). Increasing percentages of hydric soils were
only weakly predictive of unfiltered MeHg. Other LULC and
basin-level GIS measured characteristics were limited in their
value for explaining Hg in water.

No correlation was found for modeled or actual Hg from
atmospheric deposition with unfiltered MeHg; however, this
is not surprising, given that water samples were collected only
once at each site. The analysis was also hampered for filtered
MeHg by many values below reporting limits and by sparse
NADP-MDN wet-deposition data for Western States.

Discussion of Findings and Comparison
with Other Studies

Our results for total Hg in fish provide evidence that
Hg concentrations in freshwater fish across the United
States are often greater than levels specified in various
criteria for protection of fish-eating wildlife and humans.
However, the purpose of our study was to compare sites
and explore factors related to fish Hg; it was not intended to
be a thorough assessment of fish Hg with respect to fish-
consumption-advisory levels. The results presented here
paint a picture of Hg in streams across the United States for
a broad range of regional and national gradients in Hg source
strength and factors thought to influence Hg methylation and
bioaccumulation. Sources included atmospheric deposition,
urbanization, and gold or Hg mining; however, sampling
focused primarily on sites where atmospheric deposition was
the Hg source. Hg in fish, bed sediment, and stream water
were assessed spatially and with regard to existing guidelines
or criteria and possible relations to stream and basin attributes,
including chemical and physical characteristics, as well as
LULC. To date, there have been no other studies of this scale
in the literature that include multimedia sampling of MeHg
and THg and, currently, there is no national Hg monitoring
network in the United States for fish, bed sediment, and water.
A conceptual model for MeHg bioaccumulation is that
as MeHg is formed within the ecosystem through methylation
of inorganic Hg, some portion of the MeHg is transferred to
stream water, and some portion of MeHg in water is taken
up by the base of the aquatic food web through both sorption
to detritus and uptake into living algal (periphyton) cells.
MeHg is subsequently biomagnified in aquatic food webs
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to reach highest concentrations at the apex of the food web.
One plausible inference from this conceptual model is that
MeHg concentrations in organisms at the top of the aquatic
food web are linearly related to concentrations at the base of
the food web, which are in turn linearly related to aqueous
MeHg concentrations. We examined relations between fish
Hg, which is largely MeHg, to MeHg in water. Whereas fish
accumulate MeHg over time, MeHg in water is highly variable
over time, season, and hydrologic conditions. Our dataset
does not capture this variability, so correlations between fish
Hg and MeHg measured in this study are confounded by

the fact that single, instantaneous (single synoptic) aqueous
MeHg measurements are an uncertain estimator of longer-
term mean MeHg concentrations in a stream (Paller and
others, 2004; Brigham and others, 2009). Chasar and others
(2009), using temporally extensive water sampling and more
complete assessment of MeHg in aquatic food webs, support
the conceptual model that MeHg concentrations in predator
fish are related to mean aqueous MeHg concentrations and
that trophic transfer (biomagnification) is relatively consistent
among diverse stream ecosystems.

Concentrations of fish Hg from our study must be
compared to those from other studies with caution, owing
to influences of fish species, age, length, weight, sex, and
sample cut or type (skin-off fillets, as were most samples in
our study, compared to skin-on fillets or whole-body fish). In
general, Hg increases with age and size in top-predator fish
and can be lower in whole-body fish compared to muscle
or fillet. However, the ratio of fillet to whole-body Hg may
be relatively consistent for some fish species (Boudou and
Ribeyre, 1983; Ribeyre and Boudou, 1984; Goldstein and
others, 1996). Differences in Hg relations with feeding
habitat, length, and weight have been noted in other large-
scale studies, including the historical NCBP (Schmitt and
others, 1999), the USGS BEST study (Schmitt, 2002; Schmitt
and others, 2004; Hinck and others, 2004a and 2004b, 2006,
2007), and USEPA EMAP (Peterson and others, 2007). For
example, Hinck and others (2004b) analyzed whole-body fish
from historical stream sites in major river basins of the United
States and found that piscivorous fish (bass and northern
pikeminnow) in the BEST Columbia River Basin study had
higher Hg concentrations than nonpiscivores and that Hg in
these fish increased with size.

Fish in streams receiving higher amounts of Hg due to
atmospheric load, gold or Hg mining, or urban contamination
have been found generally to have higher concentrations of
Hg. Hammerschmidt and Fitzgerald (2006) compared a large
historical dataset for Hg in largemouth bass (30-40 cm total
length) for 25 States with average annual wet atmospheric
deposition of Hg from the MDN and the literature for various

periods from the 1990s to early 2004. They excluded known
point sources and found a positive correlation between
statewide average concentrations of Hg in largemouth bass
and average annual wet deposition of Hg. Based on USEPA
EMAP results, Peterson and others (2007) suggested that
atmospheric deposition of Hg was an important source of fish
Hg in the western United States. However, at least one recent
paper found that effects of atmospheric deposition on fish Hg
were lessened by the structure and function of the particular
aquatic ecosystem (Rypel and others, 2008). They compared
largemouth bass in two river basins in the southeastern United
States; atmospheric Hg was not correlated with fish Hg. In
our study, we did not find any relation to atmospheric THg
except for rock bass. In recent decades, industrial Hg use and
atmospheric Hg deposition have decreased in parts of the
United States (Engstrom and Swain, 1997). It is, therefore,
likely that fish-Hg concentrations are not at a steady state

but may be decreasing in the Nation’s waters. The response
time for fish Hg with regard to source input, such as from
atmospheric deposition, is unknown and is likely dependent on
many factors that were incompletely described or unmeasured
by this study.

Gold and Hg mining played an important role in
higher fish-Hg concentrations at selected sites in this
study, overwhelming correlations with other site or basin
characteristics. When sites in mined basins were excluded,
higher unfiltered MeHg in streams correlated with higher
unfiltered THg. Davis and others (2008) examined Hg in
largemouth bass and other fish in streams of the Sacramento-
San Joaquin Delta of California, an area affected by historical
gold and Hg mining. They found that the median fish Hg
for largemouth bass (0.53 ng/g ww) reflected this influence.
Detailed and accurate data on Hg sources, such as atmospheric
deposition, which is sparsely measured in the western
United States, as well as gold or Hg mining or other sources
of local Hg contamination, are critical to tease apart other
environmental characteristics contributing to Hg methylation
and fish Hg bioaccumulation.

In this study, the strongest correlations with
environmental characteristics were found for largemouth bass,
a top-predator/piscivorous fish, but significant correlations
were also found for brown and rainbow-cutthroat trout, with
selected environmental characteristics that were often different
from those found for bass or other sunfish. In the USEPA
EMAP study, fish were also grouped by genera or family for
comparison to environmental factors (Peterson and others,
2007). Fish Hg for rainbow trout, cutthroat trout, and brown
trout genera, as well as for suckers, had the weakest relations,
if any, with measured environmental characteristics, whereas
top-predator/piscivorous genera, such as pikeminnow, had the



strongest. The interspecies differences we observed between
fish Hg correlations with environmental characteristics (for
example, largemouth and smallmouth bass) suggest caution
in generalizing beyond the species level. This concern has
been held historically for different groups of biota and other
environmental contaminants.

Results of the current study indicate that, if sites in gold
or Hg mined basins are excluded from statistical analysis, the
most important environmental characteristics for predicting
increasing concentrations of unfiltered MeHg in streams
are higher concentrations of DOC, unfiltered THg, and
bed-sediment MeHg, as well as higher basin percentages of
wetland and lower pH. Increased bed-sediment MeHg was
correlated with increasing LOI as a measure of sediment
organic content, bed-sediment THg, and AVS. The best
predictors of increasing fish Hg for largemouth bass were
increasing basin percentages of forest and wetland, MeHg
in unfiltered water and bed sediment, and decreasing pH and
dissolved sulfate. Although less important than water and
bed-sediment organic content (as measured by DOC and
LOI, respectively), sulfate was a useful characteristic for
understanding Hg in fish, bed sediment, and water. Dissolved
sulfate concentration negatively correlated with fish Hg for
largemouth bass and brown trout. Similarly, atmospheric
sulfate deposition positively correlated with fish Hg in rock
bass. The roles of pH and sulfate in Hg methylation have
been documented in the literature; sulfate is important in Hg
methylation by bacteria and, depending on concentration, can
have either a positive or negative effect on Hg methylation
(Compeau and Bartha, 1983, 1987; Gilmour and others, 1992,
1998; Benoit and others, 2003). The complex nature of sulfate
effects may help explain why it was not highly correlated
with fish Hg across the broad range of concentrations and
environmental conditions found in our study.

Increasing MeHg in water with increasing DOC, as found
in our study over a broad range of environmental conditions,
confirms similar results found in smaller scale studies with
regard to the role of DOC in Hg methylation (St. Louis and
others, 1994; Hurley and others, 1995). With the exception of
a negative correlation for rock bass, DOC was not correlated
with fish Hg, but unfiltered MeHg was found to be positively
correlated with fish Hg for all fish species where data were
sufficient for this examination. MeHg in unfiltered water was
less than 1 ng/L at most sites and, although MeHg in unfiltered
water was high for many sites in mined basins, both unfiltered
MeHg and fish Hg were high at many other sites that also
were high in DOC, such as coastal-plain streams along the
eastern and southern United States. These observations
underscore the importance of multiple factors that control Hg
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bioaccumulation. A large source of Hg input to an ecosystem,
coupled with a modest capacity of the ecosystem to methylate
inorganic Hg, can produce high levels of MeHg in water and
fish. In contrast, a modest Hg source input to an ecosystem,
such as in ecosystems where atmospheric deposition is thought
to be the predominant source, coupled with a large capacity

of an ecosystem to methylate inorganic Hg, also can produce
high MeHg concentrations in water and fish.

High fish THg concentrations were found at sites that had
high percentages of forest and wetland, especially evergreen
forest and woody wetland more proximal to stream sites.
MeHg in unfiltered water positively correlated with wetland
abundance and, as for fish, MeHg relations to woody or
herbaceous wetland strengthened when these LULC types
were more proximal to stream sites. Wente (2000) showed
that proximity-based (distance-weighted) LULC explained
more variability in ecosystem integrity than more commonly
used standard percentages of LULC, a finding also seen
in this study. Other studies have found greater amounts of
wetland to be correlated with higher water MeHg (St. Louis
and others, 1994, 1996; Hurley and others, 1995; Krabbenhoft
and others, 1999; Grigal, 2002; Brigham and others, 2009).
Higher rates of Hg methylation in wetlands promote higher
MeHg in streams, especially during years of high water yield
(Krabbenhoft and others, 1995; Branfireun and others, 1996).
Chumchal and others (2008) noted that Hg concentrations in
largemouth bass were higher from forested-wetland habitat
compared to open-water habitat. Our finding of higher
potential methylation rates, based on the MeHg to THg
ratio, at sites in basins with primarily undeveloped land in
comparison to urban land, agrees with findings of Krabbenhoft
and others (1999) who noted that forested and mixed forest/
agricultural basins had higher rates than streams in mining
and urban basins. Horowitz and Stephens (2008) found that
THg in bed sediment was higher at sites in forested basins
(= 50 percent forested land use) than in basins in other LULC
categories. They analyzed data for a suite of trace elements
across 1,200 stream sites sampled as part of the NAWQA
Program during 1991 to 1999. Evergreen forest canopies have
greater effective surface areas than deciduous forest canopies
or open (non-forested) land for filtering Hg from atmospheric
deposition (Iverfeldt, 1991; Kolka and others, 1999). A study
by St. Louis and others (2001) showed that the tree canopies
of boreal forests receiving low atmospheric deposition are
significant sources of both MeHg and THg via litter fall to the
forest floor, wetlands, and potentially to downstream water
bodies. This underscores the greater sensitivity and efficiency
of these two LULC types with regard to Hg methylation.
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Summary and Conclusions

Hg in top-predator fish, bed sediment, and water was
examined from streams in diverse settings across the United
States during 1998-2005 by the USGS. Most studies of Hg
in aquatic environments have focused on lakes, reservoirs,
and wetlands because of the predominance of lakes with Hg
concerns and the importance of wetlands in Hg methylation.
Fewer studies have focused on Hg in streams or rivers. This
report describes the occurrence and distribution of THg in
stream fish in relation to regional and national gradients of Hg
source strength (including atmospheric deposition, gold and
Hg mining, urbanization) and other factors that are thought
to affect Hg concentrations, including LULC. In addition,
concentrations of THg and MeHg in bed sediment and stream
water were evaluated in relation to these gradients and to
identify ecosystem characteristics that favor the production
and bioaccumulation of MeHg.

Site selection targeted environmental settings thought
to be important with regard to the source, concentration,
or biogeochemical behavior of Hg in aquatic ecosystems.
Agricultural, urban, undeveloped (forested, grassland,
shrubland, and wetland land cover), and mined (for gold
and Hg) settings were of particular interest. Each site was
sampled one time during seasonal low flow. Predator fish
were targeted for collection, and composited skin-off fillets
were analyzed for THg, as most of the Hg found in fish tissue
(95-99 percent) is MeHg. Bed sediment and stream water
were analyzed for THg, MeHg, and characteristics thought
to affect Hg methylation, such as LOI, AVS, pH, DOC, and
dissolved sulfate.

Key findings of this report are as follows:

* Hg concentrations in fish at more than two-thirds of
the sites exceeded the value of 0.1 ng/g Hg ww that is
of concern for the protection of fish-eating mammals,
including mink and otters. Fish-Hg concentrations
equaling or exceeding the 0.3 ng/g ww USEPA
criterion for the protection of human health were found
at 27 percent of the sites. The highest concentrations
among all sampled sites occurred in fish from
blackwater coastal-plain streams draining forested
land or wetland in the eastern and southeastern United
States, as well as from streams draining gold- or
Hg-mined basins in the western United States.

» Across the United States, concentrations of MeHg in
unfiltered water and in bed sediment were generally
low (median values were 0.11 and 0.51 ng/g,
respectively).

» Concentrations of MeHg in unfiltered water from
several blackwater coastal-plain streams were similar
to those of streams in mined basins, although THg
concentrations were significantly lower than in mined

basins. This finding emphasizes the importance of the
amount of Hg in an ecosystem in combination with the
capacity of an ecosystem to methylate inorganic Hg.

» Across all sites, fish Hg was not significantly different
between sites in unmined basins compared to mined
basins, except for smallmouth bass. This exception was
driven by one high outlier from a mined basin.

» Largemouth bass from predominantly undeveloped or
mixed-land-use basins were significantly higher in Hg
than were largemouth bass from urban basins.

* Length-normalized Hg concentrations in largemouth
bass from unmined basins were primarily related
to basin percentages of evergreen forest and woody
wetland, especially with proximity of these land-cover
types to the sampling site. This finding underscores
the sensitivity of these land-cover types to Hg
bioaccumulation.

* Length-normalized Hg concentrations in largemouth
bass were highly correlated with stream water and bed
sediment chemistry, and with LULC characteristics,
but this was not true for smallmouth bass. This finding
warns against interspecies conversions of fish-Hg
concentrations because different fish species are
influenced by different factors.

+ In addition to basin percentages of evergreen forest and
woody wetland, increasing concentrations of MeHg in
unfiltered stream water, increasing bed sediment MeHg
normalized by loss-on-ignition (LOI), and decreasing
pH and dissolved sulfate also were important as
explanatory variables for Hg concentrations in
largemouth bass.

* In contrast to the positive relation for fish Hg with
evergreen forest and woody wetland LULC, bed-
sediment THg concentrations were higher in urban
sites. Higher concentrations of MeHg in bed sediment
were found with higher THg, LOI, and AVS; LOI was
a strong predictor of bed-sediment THg and MeHg.

» Concentrations of MeHg in unfiltered water were
higher with higher DOC and increased DOC
complexity (as measured by SUVA), THg in water,
percentage of MeHg in bed sediment, and percentage
of wetland in the basin.

It is difficult to directly compare fish-Hg concentrations
across the Nation by using any compilation of existing fish-Hg
data. Increased water sampling over the water cycle, such as
was done by Brigham and others (2009), Chasar and others
(2009), and Marvin-DiPasquale and others (2009), could
increase identification and understanding of factors leading to
high Hg bioaccumulation.
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72 Mercury in Fish, Bed Sediment, and Water from Streams Across the United States, 1998-2005

Appendix 1. Definitions for variable abbreviations used in_tables 5 and 6.

[Acronyms: MDN, Mercury Deposition Network; PRISM, Parameter-elevation Regressions on Independent Slopes Model]

Abbreviation Description
Stream water
DOC Dissolved organic carbon concentration
uv Ultraviolet absorbance at 254 nm
SUVA Specific UV absorbance at 254 nm, divided by the DOC concentration
SS conc Suspended sediment concentration
UMeHg Unfiltered water, methylmercury concentration
UTHg Unfiltered water, total mercury concentration
UMeHg/UTHg Unfiltered water, ratio of methylmercury concentration to total mercury concentration
FMeHg Filtered water, methylmercury concentration
FTHg Filtered water, total mercury concentration
PMeHg Particulate fraction, water, methylmercury concentration
PTHg Particulate fraction, water, total mercury concentration
Bed sediment

SMeHg/LOI Bed sediment, methylmercury concentration normalized by loss-on-ignition
SMeHg Bed sediment, methylmercury concentration
STHg/LOI Bed sediment, total mercury concentration normalized by loss-on-ignition
STHg Bed sediment, total mercury concentration
SMeHg/STHg Bed sediment, ratio of methylmercury concentration to total mercury concentration
LOI Loss-on-ignition
AVS Acid volatile sulfide concentration

Atmospheric deposition
SULF.DEP Atmospheric deposition, sulfate
ADRY.SEI Atmospheric deposition, dry, modeled Hg concentration
ATOT.SEI Atmospheric deposition, wet + dry, modeled Hg concentration
AWET.MDN Atmospheric deposition, wet, measured mercury concentration, MDN data
AWET.PRE Atmospheric deposition, wet, precipitation-weighted from PRISM
PREC.PR Mean annual precipitation (1961-90) from PRISM
WTDEPAVE Average depth to seasonally high water table

Other

POPDENO00 Population density, 2000 U.S. Census
ELEV.AVG Mean basin elevation

HYDRIC SOILS
PET
AET

Hydric soils
Potential evapotranspiration, mean annual
Actual evapotranspiration, mean annual



Appendix 1.

Appendix 1

Definitions for variable abbreviations used in tables 5 and 6.—Continued

[MDN, Mercury Deposition Network; PRISM, Parameter-elevation Regressions on Independent Slopes Model]

Abbreviation Description
Land use/land cover

SUM_FOREST Sum forest land in basin: evergreen, deciduous, mixed
EVR_FOREST Evergreen forest land, percent of basin area

EVR_FOREST DW
SUM_WETLAND
WOODWETLAND
WOODWETLAND DW
HERBWETLAND
HERBWETLAND DW
SUM_UNDEVELOPED
SUM_URBAN
RES L URBAN

RES L URBAN DW
RES H URBAN

RES H URBAN _DW
COM_INDUSTR
COM_INDUSTR_DW
SUM_AGRICULTURE
ROW_CROP
ROW_CROP DW
PAST_HAY

PAST _HAY DW
GRASSLAND

Distance weighted evergreen forest land in basin

Sum wetland in basin: woody and herbaceous

Woody wetlands, percent of basin area

Distance weighted woody wetlands in basin

Herbaceous wetlands, percent of basin area

Distance weighted herbaceous wetlands in basin

Sum undeveloped land in basin: forest, grassland, shrubland, tundra, wetland
Sum urban land in basin: residential, commercial/industrial

Low intensity residential land, percent of basin area

Distance weighted low intensity residential land in basin

High intensity residential land, percent of basin area

Distance weighted high intensity residential land in basin
Commercial/industrial/transportation land, percent of basin area

Distance weighted commercial/industrial/transportation land in basin

Sum agricultural land in basin: row crop, small grains, fallow, pasture/hay, orchards/vineyards
Row crop land, percent of basin area

Distance weighted row crop land in basin

Pasture/hay land, percent of basin area

Distance weighted pasture/hay land in basin

Grasslands (herbaceous) land, percent of basin area
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